
JidoshaLight
User Manual
Automatic License Plate Recognition Software Library

Release: v3.19.0
Date: 24/05/2021

JidoshaLight JidoshaLight - User Manual - v3.19.0

© Pumatronix 1/99

Summary
Change history
1. Overview

1.1. General Conditions
1.2. Software license

2. Introduction
2.1. Objective
2.2. Supported Plates
2.3. JidoshaLight SDK Structure

2.3.1. Supported APIs

3. JidoshaLight Linux
3.1. Use conditions
3.2. Software architecture
3.3. Restrictions
3.4. Installation

3.4.1. Hardkey permissions configuration
3.4.2. Environment variables configuration
3.4.2.1 Log and audit system
3.4.3. Preferences file configuration

3.5. Sample applications

4. JidoshaLight Windows
4.1. Use conditions
4.3. Installation
4.4. Environment variables configuration

4.4.1 Log and audit system

4.5 Preferences file configuration
4.6. Sample applications

5. JidoshaLight Linux/FPGA
5.1. Use conditions
5.2. Software architecture
5.3. Restrictions
5.4. Installation

5.4.1. License configuration
5.4.2. Environment variables configuration
5.4.3. Linux kernel configuration

5.5. Sample applications

6. JidoshaLight Android™
6.1. Use conditions
6.2. Software architecture
6.3. Restrictions
6.4. Installation

6.4.1 Licensing
6.4.2 Permissions

6.5. Sample application
6.5.1 Package br.gaussian.io
6.5.2 Package br.gaussian.jidoshalight
6.5.3 Package br.gaussian.jidoshalight.camera
6.5.4 Package br.gaussian.jidoshalight.sample

7. User APIs
7.1. JidoshaLight C/C++ API

7.1.1. JidoshaLight C/C++ API (Local)
7.1.2. JidoshaLight C/C++ (Synchronous Remote)
7.1.3. JidoshaLight C/C++ API (Asynchronous Remote)
7.1.4. JidoshaLight C/C++ API (Server)

7.2. JidoshaLight Java API
7.2.1. JidoshaLight Java API (Local)
7.2.2. JidoshaLight Java API (Asynchronous Remote)
7.2.3. JidoshaLight Java API (Server)
7.2.4. JidoshaLight Java API (IO/Mjpeg)

Summary JidoshaLight - User Manual - v3.19.0

© Pumatronix 2/99

7.3. Migration Guide - Jidosha C/C++ API 1

8. JIDOSHA user APIs
8.1.1. JIDOSHA C/C++ API 1
8.1.2. JIDOSHA C/C++ API 2
8.2.1. JIDOSHA C# / VB.NET API
8.3.1. JIDOSHA Delphi API
8.4.1. JIDOSHA Java API
8.5.1. Special legacy API builds

9. Known limitations

Summary JidoshaLight - User Manual - v3.19.0

© Pumatronix 3/99

Change history
Date Version Revision

22/06/2017 2.3.6 Initial Version

29/06/2017 2.3.8 Changed architecture diagram for Android platform
Added new functions to Java API

03/10/2017 2.3.10 Changed API to support maximum and minimum character size configuration

05/12/2017 2.4.4 Added multiple recognitions feature to the API

05/12/2017 2.4.6 Added new error codes to the API
Added new configuration fields to struct JidoshaLightConfig
Tutorial for ROI selection in Android app

26/03/2018 2.6.0 Added new country codes NETHERLANDS and FRANCE
Added new error code INVALD_IMAGE_SIZE
Corrected description of some error codes

06/06/2018 2.7.0 Added JIDOSHA API wrapper
Initial support for Mercosul-format Brazilian plates
Added automatic perspective correction

08/06/2018 2.8.0 Improved Brazilian plate recognition for PC platforms
Added VersionInfo to Windows DLL
Corrected typos

12/06/2018 2.8.2 Bug fixes in DSP version

14/06/2018 2.8.4 Bug fixes in DSP version

04/07/2018 2.9.0 Improved Brazilian plate recognition

29/08/2018 3.0.0 Improved support for Mercosul-format Brazilian plates

06/09/2018 3.1.0 Improved partial Brazilian plate recognition

04/10/2018 3.2.0 Official support for Mercosul-format Brazilian plates
Adopted GLIBC 2.12 by default
Added Jidosha.jar to SDK
Added Windows service example and installation script
Changed preferences file search mechanism
Changed log configuration file search mechanism
Fixed bug when loading color RAW images

19/10/2018 3.3.0 Default log behavior changed

04/12/2018 3.4.0 Reduced false recognitions of Brazilian plates.

07/02/2019 3.4.1 Support for legacy licenses of type Evasao, Movel, and Vigia+

25/01/2019 3.5.0 Added compatibility mode with legacy "charpos" builds
Partial correction of error when using JidoshaLight concurrently with container or rail OCR libraries
Fixed behavior when hardkey is removed and replugged
Fixed error in return of function getState in the legacy API
Removed wrong #ifdefs from C# samples

18/02/2019 3.5.2 Made hardkey reading more robust

Change history JidoshaLight - User Manual - v3.19.0

© Pumatronix 4/99

27/03/2019 3.6.0 Added Chile version for ITSCAM
Improved Argentina Mercosul plate recognition
Improved Uruguay Mercosul plate recognition

05/04/2019 3.7.0 Added new localization processing modes
Fixed error return code when server is not ready

18/04/2019 3.8.0 Initial support for Colombian plates

14/05/2019 3.8.1 Fixed JidoshaLightServer behavior when no license source is available

26/08/2019 3.9.0 Fixed issue in ITSCAM version when a ROI is used
Improved Argentina plate recognition
Reduced processing time when using jidoshapc wrapper

30/09/2019 3.10.0 Improved Mexico plate recognition
Improved Conesul plate recognition
Fixed jidohapc jar package

15/01/2020 3.10.1 Fixed JIDOSHA API symbol export error

26/12/2019 3.11.0 Improved Brazilian plate recognition in PC platform
Dropped Windows XP support
Reduced processing time in ARM platforms

27/01/2020 3.11.1 Fixed freeze when using Java wrapper on Windows 32 bits
Added Python wrapper

10/02/2020 3.12.0 Improved Chile plate recognition
Added Chile to Conesul group
Added experimental Peru plate support

02/03/2020 3.13.0 Improved plate recognition in ARM architectures
Added hazard identification plate support

01/04/2020 3.14.0 Added alternative core support
Added ITSCAM600 architecture support

04/06/2020 3.14.1 Fixed link error in Linux PC architectures
Fixed Panama country code
Added missing country codes to wrappers

24/06/2020 3.14.2 Fixed ITSCAM600 hardware acceleration
Improved license plate recognition in shadow condition in ITSCAM600 architecture
Fixed segmentation fault in FPGA architectures

28/07/2020 3.15.0 California (USA) license plate support
DNA base license support on ITSCAM600
Android 10 support

14/09/2020 3.16.0 Enhanced motorcycle recognition performance on PC
Enhanced overall recognition performance on AARCH64 and ITSCAM600

09/11/2020 3.17.0 Enhanced recognition performance of Peru license plates
Added ARMv8 support to Android SDK (API 26)
Minor documentation fixes

04/03/2021 3.18.0 Improved Argentina license plate recognition performance
Improved Paraguay license plate recognition performance

24/05/2021 3.19.0 Improved Brazil license plate recognition performance
Updated SDK documentation

Change history JidoshaLight - User Manual - v3.19.0

© Pumatronix 5/99

Change history JidoshaLight - User Manual - v3.19.0

© Pumatronix 6/99

1. Overview

1.1. General Conditions
The data and information contained in this document may not be altered without written permission by Pumatronix. No part of this document may be
reproduced or transmitted for whatever purpose, whether by electronic or physical means.

Copyright © Pumatronix Equipamentos Eletrônicos. All rights reserved.

1.2. Software license
The software and this document are protected by author rights. On installing the software, you are agreeing with the conditions of the license contract.

1. Overview JidoshaLight - User Manual - v3.19.0

© Pumatronix 7/99

2. Introduction
This document, JidoshaLight - User Manual, details the Application Programming Interface of the automatic license plate recognition library, namely
JidoshaLight.

The JidoshaLight library is compatible with PCs (x86/x86_64) with Windows™ or Linux and ARM™ processors running Android™ or Linux OS.

2.1. Objective
The main feature of the software library JidoshaLight consists in recognizing vehicle license plates from images.

Due to its high accuracy, JidoshaLight is the ideal tool for those who need to obtain license plate information in an automatic fashion, without external
intervention, through image analysis methods.

2.2. Supported Plates
Country Syntax Support

Argentina (032) LLLNNN (Car)
LLNNNLL (Car Mercosur)

Partial

Brazil (076) LLLNNNN (Car and Motorcycle)
LLLNLNN (Car and Motorcycle Mercosur)

Full

Chile (152) LLXXNN (Car)
LLNNN (Motorcycle 1984)
LLLNN (Motorcycle 2014)

Full

Colombia (170) LLLNNN (Car) Partial

France (250) LL-NNN-LL (Car SIV) Partial

Mexico (484) LL-NNNN-L (Car)
LLL-NN-NN (Car)
LLL-NNN-L (Car)
LL-NN-NNN (Truck)
NNN-LL-N (Truck)
NNLLNL (Truck)
NNNNNNL (Truck)
LNNNNNL (Truck)
XNN-LLL (Car CDMX)
NN-NN-LL (Truck CDMX)

Full

Netherlands (528) NN-LL-LL (Car 1999)
XX-XXX-X (Car 2008)
N-LLL-NN (Car 2013)

Partial

Paraguay (600) LLLNNN (Car)
NNNLLL (Motorcycle)
LLLLNNN (Car Mercosur)
NNNLLLL (Motorcycle Mercosur)

Full

Peru (604) LXXNNN (Car) Partial

Uruguay (858) LLLNNNN (Car)
LNNNNNN (Car Punta Cana)
LLLNNN (Car Salto)

Full

Legend

L: Letter
N: Number
X: Alphanumeric

2.3. JidoshaLight SDK Structure
The JidoshaLight software development kit (SDK) includes, besides the license plate recognition libraries libjidoshaLight.so ,

2. Introduction JidoshaLight - User Manual - v3.19.0

© Pumatronix 8/99

libjidoshaLightRemote.so , libjidoshaLightJava.so and their C and Java APIs, precompiled sample applications, the source code for those
applications, a basic build script, this manual, and an image of a license plate for testing.

All paths used in this manual are relative to the root directory of the SDK, namely JidoshaLight_TARGET_x.y.z

2.3.1. Supported APIs
Jidosha's primary API is the JidoshaLight C/C++ API and it can be found inside include and lib folders. Wrappers (bindings) for other languages
are also provided alongside the SDK and can be seen inside wrappers .

For unsupported languages contact suporte@pumatronix.com.br .

1. JidoshaLight C/C++
2. JidoshaLight Java (1.7+)
3. JidoshaLight Android
4. JidoshaLight Python (2.7 e 3.x)
5. JidoshaLight C#

JIDOSHA legacy API can be found inside jidoshapc directory. It should not be used for new designs.

2. Introduction JidoshaLight - User Manual - v3.19.0

© Pumatronix 9/99

3. JidoshaLight Linux

3.1. Use conditions
The software library JidoshaLight Linux was created to work along with a USB hardkey (security key) which accompanies the library. In other words, for
correct functioning the hardkey must be connected to a USB port of the device in which the software license will be used.

There are two hardkey versions: demonstration and full. The demonstration version has an expiry date, while the full one does not. When the expiry date
is reached, the library will automatically start returning empty plates. If your demonstration hardkey has expired and you would like to purchase a license
or extend the demonstration period, please contact Pumatronix (contato@pumatronix.com.br).

Minimum Requirements

Plataform Libraries

PC_LINUX_64
PC_LINUX_32

GLIBC 2.7
GLIBCXX 3.4.11

ARM_A9
ARM_A9_HF
ZYNQ7000

GLIBC 2.17
GLIBCXX 3.4.15

3.2. Software architecture
The library API calls can be either local, or remote through an IP network.

Local calls are executed in the same thread in which the call was made. For licenses with more than 1 thread enabled or in situations where the main
thread must not be blocked while the image is processed, new threads must be created for processing.

Remote calls can be either synchronous or asynchronous. In both cases the calls are made locally and the images are processed remotely in a server.
The use of a license is necessary only for the server processing the images, and is not needed for the client machine device using the remote library.

Synchronous calls are blocking and return the processing result at the end of the call.

For the asynchronous interface, the call returns immediately and the processing result is returned through a user-supplied callback.

The following Ogure shows the suggested architecture for a Linux or Windows™ using JidoshaLight with local calls, whether single thread or
multithread. For correct functioning of the application, the libjidoshaLight.so library must be linked to the application and the hardkey must be
plugged in the machine. Next, for the single thread case, simply call the API functions. For the multithread case, the application must create the
necessary processing threads and make calls to the JidoshaLight API functions from those threads.

Linux Process

Main Thread OCR Thread Pool
(user thread)

request queue

response queue

HardkeyHARDKEY
libjidoshaLight.so

jidosha_light_api.h

+ types

+ codes

+ functions

single blocking request

single blocking response

multithread usage

single thread usage

The following Ogure shows the suggested architecture for using the library through remote calls. For correct functioning of the applications, the
libjidoshaLightRemote.so library must be linked to the client application. The libjidoshaLight.so library must be linked to the server application
and the hardkey must be plugged in the server. The client appications and the server must be connected through a TCP/IPv4 network, whether real or
virtual (for example, loopback). Though not shown in the Ogure, and like the local calls case, the client application can have multiple threads. The server
might limit the number of concurrent active sessions based on the license.

3. JidoshaLight Linux JidoshaLight - User Manual - v3.19.0

© Pumatronix 10/99

mailto:contato@pumatronix.com.br

Linux Process - Client

Main Thread
async request

async response
(callback)

libjidoshaLight
Remote.so

jidosha_light_
api_remote.h

+ types

+ codes

+ functions

sync blocking request

sync blocking response

async API usage

sync API usage

Linux Process - Server

Main Thread
control

libjidoshaLight.so

jidosha_light
_api_server.h

+ types

+ codes

+ functions

HardkeyHARDKEY
TCP/IP

3.3. Restrictions
The library supports multithread and multiprocess applications. The maximum number of threads from all processes is limited by the license.

The library does not support process forks.

3.4. Installation

3.4.1. Hardkey permissions configuration
For correct functioning of the USB hardkey, the access permissions of its udev must be changed. Add the following line:

 ATTRS{idVendor}=="0403", ATTRS{idProduct}=="c580", MODE="0666"

to the end of the file corresponding to your Linux distribution:

 Centos 5.2/5.4: /etc/udev/rules.d/50-udev.rules
 Centos 6.0 onward: /lib/udev/rules.d/50-udev-default.rules
 Ubuntu 7.10: /etc/udev/rules.d/40-permissions.rules
 Ubuntu 8.04/8.10: /etc/udev/rules.d/40-basic-permissions.rules
 Ubuntu 9.04 onward: /lib/udev/rules.d/50-udev-default.rules
 openSUSE 11.2 onward: /lib/udev/rules.d/50-udev-default.rules

For Debian, add the following lines:

 SUBSYSTEM=="usb_device", MODE="0666"
 SUBSYSTEM=="usb", ENV{DEVTYPE}=="usb_device", MODE="0666"

to the end of the file:

 Debian 6.0 onward: /lib/udev/rules.d/91-permissions.rules

For instructions on how to enable the hardkey for other Linux distributions, please contact Pumatronix.

3.4.2. Environment variables configuration
Before running the test applications included in the SDK, or any other application using JidoshaLight Linux, it is necessary to conOgure some
environment variables.

First, it is necessary to add to the system's search path the directory containing the libraries, as follows:

 $ export LD_LIBRARY_PATH=./lib:$LD_LIBRARY_PATH

3. JidoshaLight Linux JidoshaLight - User Manual - v3.19.0

© Pumatronix 11/99

3.4.2.1 Log and audit system

ATTENTION: starting from version 3.3.0 the log and audit system comes DISABLED by default

The JidoshaLight library has a built-in log system capable of auditing the library behavior on the Oeld. To enable some pre-conOgured debug messages,
export the environment variable JL_LOGCFG as "default".

 $ export JL_LOGCFG=default

The log system allows other debug messages to be enabled. It also supports redirecting its output to a Ole. Those feature are speciOed by a
configuration file whose structure is provided next.

The configuration file is read only once during library load and the search order is:

1. an absolute path in environment variable JL_LOGCFG (if any)
2. a file named jlog.conf in the current directory [./]

Configuration file structure:

 # JLog Configuration File
 # This is a comment line in a JLog configuration file
 # Entry format:
 # TOPIC; LEVEL; TAG_FMT, FILES {comma separated}; SIZES {comma separated}
 #
 # Especial Files
 # [STDOUT] - prints to the screen (size always 0)
 STDERR ; CRITICAL ; SIMPLE_TS ; [STDOUT], log.txt ; 0, 20MB
 MSGSERVER ; INFO ; SIMPLE_TS ; [STDOUT], log.txt ; 0, 20MB
 MSGSERVER ; DEBUG ; SIMPLE_TS ; [STDOUT], log.txt ; 0, 20MB
 MSGSERVER ; WARN ; SIMPLE_TS ; [STDOUT], log.txt ; 0, 20MB
 MSGSERVER ; NOTICE ; SIMPLE_TS ; [STDOUT], log.txt ; 0, 20MB
 MSGSERVER ; CRITICAL ; SIMPLE_TS ; [STDOUT], log.txt ; 0, 20MB
 ANPRMSG ; INFO ; SIMPLE_TS ; [STDOUT], log.txt ; 0, 20MB
 ANPRMSG ; DEBUG ; SIMPLE_TS ; [STDOUT], log.txt ; 0, 20MB
 ANPRMSG ; WARN ; SIMPLE_TS ; [STDOUT], log.txt ; 0, 20MB
 ANPRMSG ; NOTICE ; SIMPLE_TS ; [STDOUT], log.txt ; 0, 20MB
 ANPRMSG ; CRITICAL ; SIMPLE_TS ; [STDOUT], log.txt ; 0, 20MB
 LOGGER ; INFO ; SIMPLE_TS ; [STDOUT], log.txt ; 0, 20MB
 LOGGER ; CRITICAL ; SIMPLE_TS ; [STDOUT], log.txt ; 0, 20MB
 LICENSE ; INFO ; SIMPLE_TS ; [STDOUT], log.txt ; 0, 20MB
 LICENSE ; DEBUG ; SIMPLE_TS ; [STDOUT], log.txt ; 0, 20MB
 LICENSE ; WARN ; SIMPLE_TS ; [STDOUT], log.txt ; 0, 20MB
 LICENSE ; NOTICE ; SIMPLE_TS ; [STDOUT], log.txt ; 0, 20MB
 LICENSE ; CRITICAL ; SIMPLE_TS ; [STDOUT], log.txt ; 0, 20MB
 HARDWARE ; INFO ; SIMPLE_TS ; [STDOUT], log.txt ; 0, 20MB
 HARDWARE ; CRITICAL ; SIMPLE_TS ; [STDOUT], log.txt ; 0, 20MB
 JLIB ; INFO ; SIMPLE_TS ; [STDOUT], log.txt ; 0, 20MB
 JLIB ; CRITICAL ; SIMPLE_TS ; [STDOUT], log.txt ; 0, 20MB
 MSGANPR ; INFO ; SIMPLE_TS ; [STDOUT], log.txt ; 0, 20MB
 MSGANPR ; DEBUG ; SIMPLE_TS ; [STDOUT], log.txt ; 0, 20MB
 VLOOP ; INFO ; SIMPLE_TS ; [STDOUT], log.txt ; 0, 20MB

-The log conOguration Ole above will conOgure the library to generate all enabled messages, both to the relative Ole log.txt and to stdout. If you wish
to disable one or more types of messages, comment the line with '#' or remove it.

To disable messages to stdout and instruct the library to generate a log file, follow the example below for each desired type of message:

 MSGANPR ; INFO ; SIMPLE_TS ; log.txt ; 20MB

3.4.3. Preferences file configuration
The library allows an optional preferences Ole to be used. Through this Ole it is possible to conOgure the struct JidoshaLightConfig Oelds, overriding
the values of the struct passed to the API. The format is json, as follows:

 {
 "jidosha-light" : {
 "config" : {
 "vehicleType" : 3,
 "processingMode" : 4,
 "timeout" : 0,
 "countryCode" : 76,
 "minProbPerChar" : 0.85,
 "maxLowProbabilityChars" : 0,
 "lowProbabilityChar" : "?",
 "avgPlateAngle" : 0.0,
 "avgPlateSlant" : 0.0,
 "maxCharHeight" : 0,
 "minCharHeight" : 0,
 "maxCharWidth" : 0,
 "minCharWidth" : 0,
 "avgCharHeight" : 0,
 "avgCharWidth" : 0,
 "xRoi" : [0,0,0,0],
 "yRoi" : [0,0,0,0],
 "ENABLE_CONFIG_OVERRIDE" : true

3. JidoshaLight Linux JidoshaLight - User Manual - v3.19.0

© Pumatronix 12/99

 }
 }
 }

By default, the library searches for the Ole jl_anpr_preferences.json in the working directory. If the Ole exists, it is loaded; otherwise, the library will
search for it in the path indicated by the environment variable JL_ANPR_PREFS . If the environment variable does not exist, no preferences Ole is loaded.
If it exists and the indicated path is a valid file, the file is loaded.

If a preferences file was loaded, the preferences will only be applied if the field ENABLE_CONFIG_OVERRIDE is true . struct JidoshaLightConfig fields
that are absent from the preferences file will receive their default value, as defined by the library.

Since the preferences Ole is loaded upon library initialization (usually at the start of the process that uses the library), changes to the Ole will only take
effect when the library is reloaded. This behavior might change in future versions.

3.5. Sample applications
The SDK includes some sample applications with source code:

JidoshaLightSample - Example of local processing
JidoshaLightSampleAsync - Example of asynchronous local processing with multiple threads
JidoshaLightSampleClient - Example of client application with asynchronous remote processing
JidoshaLightSampleServer - Example of server application
JidoshaLightSampleMulti - Example of recognition of multiple license plates in the same image

If you wish to recompile the samples, use the make_samples.sh script. See the example for ARM Linux below:

 $ cd sample/src && CXX=arm-none-linux-gnueabi-g++ && source make_samples.sh

After configuring the hardkey and environment variables and plugging in the hardkey, you will be able to run the samples.

To run JidoshaLightSample, open a terminal and run it with the supplied reference image:

 $./sample/bin/JidoshaLightSample ./res/640x480.bmp

The application should inform the library version as well as the license plate recognition result.

 -- JidoshaLight Sample Application --
 Library Info
 Version: x.y.z
 SHA1: abcdefghijklmnopqrstuvwxyz

 -> Processing: ./res/640x480.bmp
 PLATE: AJK7722 - PROB: 0.9944 - POSITION: (258,338,142,27) - TIME: 419.03 ms

To run the JidoshaLightSampleServer and JidoshaLightSampleClient samples, run the server program from a terminal:

 $./sample/bin/JidoshaLightSampleServer

The application should inform that it was initialized on TCP port 51000 and that the hardkey was found.

 [2016:08:30 15:08:16.620245 : LOGGER : 0x0001 : INFO] -> Logger session started
 Starting server with 1 thread(s), queue size: 10, queueTimeout: 0 ms, 1 connection(s), port: 51000
 [2016:08:30 15:08:16.621808 : MSGSERVER : 0x0001 : INFO] -> Started server at port 51000
 [2016:08:30 15:08:16.631327 : HARDWARE : 0x0007 : INFO] -> Hard key attached
 [2016:08:30 15:08:17.169088 : HARDWARE : 0x0008 : INFO] -> Found valid hard key

Next, in another terminal, run the client program. The client should inform the library version as well as the license plate recognition result and
statistics:

 $./sample/bin/JidoshaLightSampleClient resources/images/640x480.bmp

 ===================================
 Remote API: 127.0.0.1@51000
 Threads: 1
 Thread queue size: 5
 Compilation_Date: Aug 30 2016 - 15:08:10
 Images: 1
 ===================================
 PLATE: AJK7722 - PROB:0.9944 - ELAPSED: 14.35 ms - returncode: 0
 -- Library --
 Version: 2.1.0

3. JidoshaLight Linux JidoshaLight - User Manual - v3.19.0

© Pumatronix 13/99

 Build SHA1: d86e07e560206cb418fdc47b1c5108d7ac76657b
 Build FLAGS: I686;Linux_32;DEBUG_LEVEL=DEBUG_LV_LOG;JDONGLE_VENDOR_MODE;...

 -- Total --
 TotalTime: 14.35 ms (CPU: 14.35 ms)
 Plates: 1
 NonEmpty: 1 - 100.00 %
 AverageTime: 14.35 ms

 -- Load/Decode --
 ElapsedTime: 0.83 ms
 AverageTime: 0.83 ms (5.77 %)

 -- Localization --
 ElapsedTime: 7.01 ms
 AverageTime: 7.01 ms (48.83 %)

 -- Segmentation --
 ElapsedTime: 0.69 ms
 AverageTime: 0.69 ms (4.81 %)

 -- Classification --
 ElapsedTime: 5.72 ms
 AverageTime: 5.72 ms (39.88 %)

Go back to the server terminal and verify the additional log messages informing about the license data and connection events:

 [2016:08:30 15:11:24.710395 : LICENSE : 0x0006 : INFO] -> Software license to GAUSSIAN, max.
 threads 16, max. connections 16
 [2016:08:30 15:11:24.710421 : LICENSE : 0x0001 : INFO] -> Valid license found 0x2137069056
 [2016:08:30 15:11:24.857709 : MSGSERVER : 0x0005 : INFO] -> Accepted connection: 127.0.0.1@51000
 [2016:08:30 15:11:25.563783 : MSGSERVER : 0x0007 : NOTICE] -> Dropped connection: 127.0.0.1:@51000

3. JidoshaLight Linux JidoshaLight - User Manual - v3.19.0

© Pumatronix 14/99

4. JidoshaLight Windows

4.1. Use conditions
The software library JidoshaLight Windows was created to work along with a USB hardkey (security key) which accompanies the library. In other words,
for correct functioning the hardkey must be connected to a USB port of the device in which the software license will be used.

There are two hardkey versions: demonstration and full. The demonstration version has an expiry date, while the full one does not. When the expiry date
is reached, the library will automatically start returning empty plates. If your demonstration hardkey has expired and you would like to purchase a license
or extend the demonstration period, please contact Pumatronix (contato@pumatronix.com.br).

Minimum Requirements

Plataform Versions

PC_WINDOWS_64
PC_WINDOWS_32

Windows 7
Windows 7

4.3. Installation
For installation you only need to plug the hardkey in the Windows machine that will run the library. Windows should automatically install a driver when
the hardkey is first plugged in. To test whether the installation was successful, you can run the sample applications detailed in section 4.5.

4.4. Environment variables configuration
Before running the test applications included in the SDK, or any other application using JidoshaLight Windows, it is necessary to conOgure some
environment variables.

First, it is necessary to add to the system's search path the directory containing the libraries. Access the SDK folder and run the following command:

 $ set PATH=./lib;%PATH%

NOTE: The previous command will only change the PATH for the current terminal session. To set the variable permanently, go to the Advanced tab
in System Properties > Environment Variables and add the path to the SDK lib folder, either to the system or to the user variable named Path .

4.4.1 Log and audit system
Ver 4.4.2.1 Log and audit system.

4.5 Preferences file configuration
See 3.4.3. Preferences file configuration.

4.6. Sample applications
The SDK includes some sample applications with source code:

JidoshaLightSample - Example of local processing
JidoshaLightSampleAsync - Example of asynchronous local processing with multiple threads
JidoshaLightSampleClient - Example of client application with asynchronous remote processing
JidoshaLightSampleServer - Example of server application
JidoshaLightSampleMulti - Example of recognition of multiple license plates in the same image
JidoshaLightSampleServerService - Exemple of server as a Windows service

To run JidoshaLightSample, for example, run the command below from the SDK folder. You should get a similar output.

>sample\bin\JidoshaLightSample.exe .\res\640x480.bmp
 [year:month:day time : LOGGER : 0x0001 : INFO] -> JLib log session started
 [year:month:day time : JLIB : 0x0004 : INFO] -> JLib singleton created

 -- JidoshaLight LPR Sample Application - 64 bits --
 Compilation Date: month day year time
 Library Info

4. JidoshaLight Windows JidoshaLight - User Manual - v3.19.0

© Pumatronix 15/99

mailto:contato@pumatronix.com.br

 Version: x.y.z
 SHA1: sha1
 [year:month:day time : HARDWARE : 0x0008 : INFO] -> Hardkey attached
 [year:month:day time : HARDWARE : 0x000A : INFO] -> Hardkey access valid
 [year:month:day time : LICENSE : 0x0002 : INFO] -> Licensed to company, product LPR, threads 4, connections 1, serial 150089957 (0x8f230e5), TTL: -1
 -- LicenseInfo --
 >> Serial: 0x8f230e5
 >> Customer: empresa
 >> State: 0
 >> TTL: -1 hours
 >> MaxThreads: 4
 >> MaxConections: 1
 FILE: ..\..\res\640x480.bmp - PLATE: AJK7722 - COUNTRY: 76 - PROB: 0.9912 - POSITION: (258,339,142,25) - TIME: 12.41 ms

 Exiting
 [year:month:day time : JLIB : 0x0002 : INFO] -> JLib network module stopped
 [year:month:day time : JLIB : 0x0005 : INFO] -> JLib singleton destroyed
 [year:month:day time : LOGGER : 0x0002 : INFO] -> JLib log session stopped

4. JidoshaLight Windows JidoshaLight - User Manual - v3.19.0

© Pumatronix 16/99

5. JidoshaLight Linux/FPGA

5.1. Use conditions
The JidoshaLight Linux software library with FPGA acceleration is licensed from a license Ole linked to the hardware device, hence a hardkey is not
needed. The library supports hardware acceleration with Xilinx FPGAs of the Zynq-7000 family. The standard version has support for the
XC7Z020-CLG400 device, and can be adapted for devices with higher capacity.

See the Minimum Requirements table for more information.

5.2. Software architecture
The software architecture is similar to the non-accelerated Linux version, described in 3.2. Software architecture

The main differences are due to the additional programming interfaces and in the reserved shared memory area. ConOguration and installation are
detailed in 5.4. Installation

The figures below illustrate the suggested architecture for both local and remote API.

Linux Process

Main Thread OCR Thread Pool
(user thread)

request queue

response queue

libjidoshaLight.so

jidosha_light_api.h

+ types

+ codes

+ functions

single blocking request

single blocking response

multithread usage

single thread usage

LicenseFile

Shared
Memory

FPGA Device

Program
Interface

Diagram with local API use cases

5. JidoshaLight Linux/FPGA JidoshaLight - User Manual - v3.19.0

© Pumatronix 17/99

https://www.xilinx.com/products/silicon-devices/soc/zynq-7000.html

Linux Process - Client

Main Thread

async request

async response
(callback)

libjidoshaLight
Remote.so

jidosha_light_
api_remote.h

+ types

+ codes

+ functions

sync blocking request

sync blocking response

async API usage

sync API usage

Linux Process - Server

Main Thread
control

libjidoshaLight.so

jidosha_light_
api_server.h

+ types

+ codes

+ functions

LicenseFile

FPGA Device

Shared
Memory

Program
Interface

TCP/IP

Diagram with remote API use cases

5.3. Restrictions
The library with FPGA acceleration supports multithread applications, where the maximum number of threads is limited by the acquired license. There is
no support for multiprocess applications.

5.4. Installation

5.4.1. License configuration
The library is licensed through a file linked to the device in use.

To obtain the identiOer for you hardware, you need to execute the JidoshaLightDna application from a terminal running in the device, which must be
previously configured as described in 5.4.2. Environment variables configuration.

 $./tools/JidoshaLightDna
 0xFEDCBA9876543210

IMPORTANT: The concurrent use of this application with any other that uses the library is not allowed and may freeze the device.

5.4.2. Environment variables configuration
Before running the test applications included in the SDK, or any other application using JidoshaLight Linux/FPGA, it is necessary to conOgure some
environment variables.

When using the FPGA-accelerated version of the library, besides the variables described in 3.4.2. Environment variables con=guration, the following
configurations are needed:

JL_MPOOL_BASE: Base address of memory allocated for communication between library and FPGA. If undeOned, the default value is 0x3A000000.
For example:

 $ export JL_MPOOL_BASE=0x3A000000

JL_MPOOL_BUFFERNUM: Number of memory buffers needed to run the library. If undeOned, the default value is 32 buffers, while the minimum
required value is 12 buffers per concurrent thread that uses the library. For example:

 $ export JL_MPOOL_BUFFERNUM=32

5. JidoshaLight Linux/FPGA JidoshaLight - User Manual - v3.19.0

© Pumatronix 18/99

JL_MPOOL_BUFFERSIZE: Size in bytes of each memory buffer, which has to be a multiple of 4096 bytes. If undeOned, the default value is 2097152
bytes (2MB). This is the required value to process images of size up to 800x600 pixels. This value needs to be larger than 4 times the image
resolution. For example:

 $ export JL_MPOOL_BUFFERSIZE=2097152

JL_LICENSE_FILE: Path to the license Ole. The license Ole is linked to the device being used. To obtain the device identiOer, see 5.4.1. License
configuration. Ex.:

 $ export JL_LICENSE_FILE=./license.bin

5.4.3. Linux kernel configuration
Two interfaces are needed for communication between the library and the FPGA device: one dedicated to FPGA conOguration and a shared memory for
data exchange.

The conOguration interface is provided by Xilinx through a char device (/dev/xdevcfg) and is not currently part of the standard Linux kernel. Source code
and installation instructions can be found at the Xilinx Wiki page.

The shared memory needs to be visible in /dev/mem and reserved for exclusive use by the library, and must not be used by the Linux kernel.

To achieve this setting, it is necessary to limit the amount of memory used by the kernel on its initialization.

Below is an example of how to reserve the last 96MB of memory of a device with 1GB of RAM.

In u-boot, configure:

 set bootargs 'root=/dev/ram mem=928M rw'

To make the /dev/mem device visible, use the 'CONFIG_DEVMEM=y' option in kconfig in the kernel build process.

Also add to the Linux device tree the following configurations:

 memory {
 device_type = "memory";
 reg = <0x3A000000 0x6000000>;
 };

 reserved-memory {
 #address-cells = <1>;
 #size-cells = <1>;
 ranges;

 linux,cma {
 compatible = "shared-dma-pool";
 reusable;
 size = 0x6000000;
 alignment = 0x1000;
 linux,cma-default;
 };
 };

5.5. Sample applications
See 3.5. Sample applications.

5. JidoshaLight Linux/FPGA JidoshaLight - User Manual - v3.19.0

© Pumatronix 19/99

http://www.wiki.xilinx.com/Linux+Drivers

6. JidoshaLight Android™

6.1. Use conditions
The software library JidoshaLight Android™ was created to work along with a license Ole that must be generated after the user installs the application.
The license Ole is generated per installation and is linked to the device hardware, which means that it is necessary to generate a new license when the
application is reinstalled or when there is a hardware change (the device's SIM card is included in the hardware category). It is not necessary to generate
a new license when changing the device's battery. For temporary (time-to-live) licenses, the device's date and time must be synchronized over the mobile
network provider.

The library has support for multithread applications, where the maximum number of threads and the minimum processing time are limited by the
acquired license. When using the server API, the maximum number of simultaneous connections accepted by the server is also limited by the license.

The library functionalities are accessed through the Java API. The present version is compatible with ARM™ processors (armv7-a) with Android™ 4.4 or
newer for library only use (shared libraries and basic Java classes), and Android™ 8 or newer for installing the sample application
(CameraView.java, BackCamera.java, BaseCamera.java).

6.2. Software architecture
The recommended way of working with the JidoshaLight library on Android is through the asynchronous client and server topology. This topology
allows optimizing the Uow of the license plate recognition process, since all processing and memory allocation happen in native code. This topology
also allows processing images externally without any further changes in the application. The sample application included with the SDK implements this
kind of topology.

Usually the best experience is obtained in freeflow mode. In this mode, as opposed to point and shoot mode, the license plate recognition process is
applied to all images sent by the camera, with no user intervention (shooting) necessary. Therefore, as soon as the camera is activated, the processing
begins and callbacks with the recognition results start being generated in an asynchronous manner. The asynchronous client and server topology is Ot
to be used in freeflow mode without any significant changes in the application implementation.

I. Pros of asynchronous client in freeflow mode:

1. Simplified application code, which makes it easier to integrate the library
2. Better user experience (faster recognitions)
3. Automatic resource management (queues, threads, network)
4. Less coupling between image acquisition (camera), license plate recognition processing, and output (UI and DB)
5. Ability to process locally or remotely without source code change

II. Cons of asynchronous client in freeflow mode:

1. Callbacks happen in a thread separate from the UI thread, requiring synchronization (runOnUiThread)
2. Callbacks are issued sequentially and cannot block (callback code must be light and fast)
3. Asynchronous error handling is usually more complex

MainActivity

onCreate()

Configures UI

Configures license
file

Configures LPR
server

CameraActivity

onCreate()

Configures UI

Configures LPR
client

Configures
CameraSource

onCameraFrame()

FrameEvent

JidoshaLightRemote.ANPR()
queues frame to be processed

asynchronously

on_lpr_result_cb()

LPREvent

Processes recognition
result

Processes recognition
result

Updates UI
Updates DB

asynchronous call

Example of flow of an synchronous client application in freeflow mode
MainActivity configures the library license and initiates the processing server

CameraActivity configures the license plate recognition client, the camera (CameraSource), and handles events

6. JidoshaLight Android™ JidoshaLight - User Manual - v3.19.0

© Pumatronix 20/99

6.3. Restrictions

NOTE: The memory restrictions below do not apply to natively allocated memory (inside the shared library).

For high-performance applications, we recommend using the asynchronous client API.

The Android™ operating system has strict restrictions regarding use of RAM by applications. The maximum amount of memory an application is
allowed to allocated on the heap differs between devices, but is between 24MB and 36MB. If an application tries to allocate more memory than it is
allowed to, an OutOfMemoryError exception occurs and the application is terminated by the operating system.

Since the resolution of smartphone cameras and tablets is getting larger and larger, developers must mind the size of images they are trying to
recognize in order to decrease the chances of an OutOfMemoryError exception. For example, and 8MP image in ARGB8888 Bitmap format takes 24MB,
which is larger than the memory limit allowed by several devices.

Since JidoshaLight needs the plate characters to be at most 30 pixels high, a 1280x720 resolution image is enough for license plate recognition. If you
wish to show the user a high resolution image, you can acquire and store the image in high resolution, and use decoding and resizing methods
supported by Android™'s android.graphics.Bitmap class. In that case, you must keep in mind the reduction of character size when resizing the
image, and guarantee a size between 15 and 30 pixels in the reduced-resolution image.

Another Android™ operating system pitfall relates to blocking the graphical user interface thread. By default, the graphical user interface thread is the
only one created by the application, and all processing happens within it. In order for the graphical interface to remain responsive to the user, it must
not be blocked for more than a few milliseconds. If that happens, the operating system will issue an alert to the user informing that the application has
stopped responding, or simply terminate the application.

For more information on memory management on Android:

https://developer.android.com/training/articles/memory.html
https://developer.android.com/training/displaying-bitmaps/index.html

6.4. Installation

NOTE: All Java classes marked as native cannot have their package modified.

All other classes can be moved freely.

The JidoshaLight for Android SDK includes the API and native C language shared libraries (which can be accessed by any JNI code), the wrappers and
libraries for Java, and a sample application described in 6.5. Sample application.

6.4.1 Licensing
A valid license is needed to use the JidoshaLight library on Android™ systems. The licensing is made by device and for a limited time period, which
means the license must be generated again upon hardware change or expiration.

The API function JidoshaLight.setLicenseFromData() should be used to pass the license content to the library and this must be done before any
other API calls. A helper class JidoshaLightAndroidHelper.java is supplied with the sample application to help with this procedure.

The license request procedure is fully automated by the function JidoshaLight.getLicenseFromServer , beforehand however, the user must register
the Device ID with Pumatronix and the device must have an active internet connection during the request.

For more information on licensing, send an e-mail to suporte@pumatronix.com.br.

6.4.2 Permissions
The following permissions have to be added for correct functioning of the library and must be included in the application's AndroidManifest.xml.

 <!-- Permissions needed to use the library (obligatory) -->
 <uses-permission android:name="android.permission.WRITE_EXTERNAL_STORAGE"/>
 <uses-permission android:name="android.permission.READ_EXTERNAL_STORAGE"/>
 <!-- Permissions needed to use the device's camera (optional) -->
 <uses-feature android:name="android.hardware.camera" android:required="true" />
 <uses-permission android:name="android.permission.CAMERA" />
 <!-- Permissions necessary to use the MJPEG camera (optional) -->
 <uses-permission android:name="android.permission.INTERNET"/>

6.5. Sample application
The sample application included in the SDK was developed to be used with Android™ Studio 4 or newer. It shows how to use the library to recognize
license plates in a video stream from the smartphone's back camera or from an external MJPEG camera. It also shows how to implement the

6. JidoshaLight Android™ JidoshaLight - User Manual - v3.19.0

© Pumatronix 21/99

https://developer.android.com/training/articles/memory.html
https://developer.android.com/training/displaying-bitmaps/index.html
mailto:suporte@pumatronix.com.br

conOguration screen for the library parameters, camera Activity with grid and zoom support, recognition list, recognition details, licensing system, and
integration with database in order to search for information related to the detected license plate.

6.5.1 Package br.gaussian.io
Mjpeg.java: Wrapper class for the native MJPEG decoder API. See class MjpegCamera.java for a higher-level implementation.

6.5.2 Package br.gaussian.jidoshalight
JidoshaLight.java: Class containing the local API functions (license plate recognition and licensing) and function return codes
JidoshaLightRemote.java: Class containing the asynchronous remote API functions
JidoshaLightServer.java: Class containing the server API functions

6.5.3 Package br.gaussian.jidoshalight.camera
BaseCameraSource.java: Base class for all camera implementations
BackCamera.java: Back camera implementation
MjpegCamera.java: External MJPEG camera implementation
CameraFrame.java: Class that stores a frame from a camera
CameraView.java: View capable of displaying an image Uow from a BaseCameraSource; provides grid support, overlay for license plates, pinch-to-
zoom and ROI selection

6.5.4 Package br.gaussian.jidoshalight.sample

6.5.4.1 Common
common/JidoshaLightAndroidHelper.java: Helper class containing support methods for license Ole reading and writing, besides other utility
methods.

common/JidoshaLightServerHelper.java: Helper class containing support methods for initializing a local license plate recognition server.

6.5.4.2 Activities

MainActivity

The application's main Activity, it shows how to configure the license file and initialize a local license plate recognition server.

DetailActivity

This Activity is triggered when selecting an item from the recognition list. It expands the information about a specific recognition.

MainActivity and DetailActivity, respectively
Characters redacted for privacy

6. JidoshaLight Android™ JidoshaLight - User Manual - v3.19.0

© Pumatronix 22/99

CameraActivity

Shows how to configure and capture camera images, allowing to:

Instantiate a camera from the configuration;
Configure a license plate processing client;
Configure the optical zoom with the pinch gesture;
Select the region of interest (ROI) by tapping;
Enable/disable processing.

For better recognition performance, the camera's zoom and focus must allow capturing sharp and properly sized images. The plate height must be
between 30 and 50 pixels. The guides help in framing the plate, guaranteeing correct plate size and orientation when the image is captured. The plate
must have approximately the size of a grid rectangle.

Because the smartphone or tablet camera is constantly moving, ideally the autofocus and video stabilization resources should be enabled, if present.
Depending on the application, we recommend exporting manual focus and exposure settings for best results.

CameraActivity
The ideal plate height for recognition should be same as that of a grid rectangle

(the plate does not need to be aligned with the grid)

ROI region selection
a) Tap and hold on the screen to enable ROI use

b) Tap twice to begin selecting the ROI points
c) Tap the four points that delimit the region (clockwise)

6. JidoshaLight Android™ JidoshaLight - User Manual - v3.19.0

© Pumatronix 23/99

6.5.4.3 Fragments

ConfigurationFragment

Fragment used to show and conOgure the JidoshaLight library parameters. The conOgurable parameters are the same as those available for the Java/C
API.

LicenseManagerFragment

Fragment used to implement the licensing system. It shows how to extract the Device ID and how to request a license file.

ConfigurationFragment (1,2) and LicenseManagerFragment (3,4)
Changing the license file or some configurations requires restarting the application

6. JidoshaLight Android™ JidoshaLight - User Manual - v3.19.0

© Pumatronix 24/99

7. User APIs
The JidoshaLight library exports 4 different APIs for automatic license plate recognition: Local, Synchronous Remote, Asynchronous Remote, and
Server. The Synchronous Remote API will be discontinued in the future and should not be used in new projects. Besides the recognition APIs, the library
provides some utility functions, such as a MJPEG-format video receiver and a library license reader. These additional APIs are partially documented in
this manual. For more information on their use, consult the header files in folder include/gaussian/common .

By default, the languages supported by the API and included in the SDK are C/C++ and Java. Wrapper for Python, C# and Delphi may be supplied on
demand.

For questions or inquiries regarding support for other languages, send an email to contato@pumatronix.com.br with subject "JidoshaLight API".

7.1. JidoshaLight C/C++ API
The library's native API (Application Programming Interface) is written in C, which make it easy to create bindings for use in other languages. The entire
API is available through a set of headers inside the include folder in the SDK.

7.1.1. JidoshaLight C/C++ API (Local)
The Local API contains the types, deOnitions, and basic functions for local processing of images. Since release 2.4.4 the contents are divided between
the jidosha_light_api_common.h and jidosha_light_api.h files.

For backward compatibility, jidosha_light_api_common.h is included by jidosha_light_api.h.

jidosha_light_api_common.h

 //==
 // CODES
 //==
 enum JidoshaLightVehicleType {
 JIDOSHA_LIGHT_VEHICLE_TYPE_CAR = 1,
 JIDOSHA_LIGHT_VEHICLE_TYPE_MOTO = 2,
 JIDOSHA_LIGHT_VEHICLE_TYPE_BOTH = 3
 };

 enum JidoshaLightMode {
 JIDOSHA_LIGHT_MODE_DISABLE = 0,
 JIDOSHA_LIGHT_MODE_FAST = 1,
 JIDOSHA_LIGHT_MODE_NORMAL = 2,
 JIDOSHA_LIGHT_MODE_SLOW = 3,
 JIDOSHA_LIGHT_MODE_ULTRA_SLOW = 4,

 /* the following values can be added to one of the above modes */
 JIDOSHA_LIGHT_LOCALIZATION_MODE_0 = 0 << 8,
 JIDOSHA_LIGHT_LOCALIZATION_MODE_1 = 1 << 8,
 JIDOSHA_LIGHT_LOCALIZATION_MODE_2 = 2 << 8
 };

 /* ISO 3166-1 */
 enum JidoshaLightCountryCode {
 JIDOSHA_LIGHT_COUNTRY_CODE_CONESUL = 0,
 JIDOSHA_LIGHT_COUNTRY_CODE_ARGENTINA = 32,
 JIDOSHA_LIGHT_COUNTRY_CODE_BRAZIL = 76,
 JIDOSHA_LIGHT_COUNTRY_CODE_CHILE = 152,
 JIDOSHA_LIGHT_COUNTRY_CODE_COLOMBIA = 170,
 JIDOSHA_LIGHT_COUNTRY_CODE_MEXICO = 484,
 JIDOSHA_LIGHT_COUNTRY_CODE_PARAGUAY = 600,
 JIDOSHA_LIGHT_COUNTRY_CODE_PERU = 604,
 JIDOSHA_LIGHT_COUNTRY_CODE_URUGUAY = 858,
 JIDOSHA_LIGHT_COUNTRY_CODE_NETHERLANDS = 528,
 JIDOSHA_LIGHT_COUNTRY_CODE_FRANCE = 250
 };

 enum JidoshaLightReturnCode {
 /* success */
 JIDOSHA_LIGHT_SUCCESS = 0,
 /* basic errors */
 JIDOSHA_LIGHT_ERROR_FILE_NOT_FOUND = 1,
 JIDOSHA_LIGHT_ERROR_INVALID_IMAGE = 2,
 JIDOSHA_LIGHT_ERROR_INVALID_IMAGE_TYPE = 3,
 JIDOSHA_LIGHT_ERROR_INVALID_PROPERTY = 4,
 JIDOSHA_LIGHT_ERROR_COUNTRY_NOT_SUPPORTED = 5,
 JIDOSHA_LIGHT_ERROR_API_CALL_NOT_SUPPORTED = 6,
 JIDOSHA_LIGHT_ERROR_INVALID_ROI = 7,
 JIDOSHA_LIGHT_ERROR_INVALID_HANDLE = 8,
 JIDOSHA_LIGHT_ERROR_API_CALL_HAS_NO_EFFECT = 9,
 JIDOSHA_LIGHT_ERROR_INVALID_IMAGE_SIZE = 10,
 /* license errors */
 JIDOSHA_LIGHT_ERROR_LICENSE_INVALID = 16,
 JIDOSHA_LIGHT_ERROR_LICENSE_EXPIRED = 17,
 JIDOSHA_LIGHT_ERROR_LICENSE_MAX_THREADS_EXCEEDED = 18,
 JIDOSHA_LIGHT_ERROR_LICENSE_UNTRUSTED_RTC = 19,
 JIDOSHA_LIGHT_ERROR_LICENSE_MAX_CONNS_EXCEEDED = 20,
 JIDOSHA_LIGHT_ERROR_LICENSE_UNAUTHORIZED_PRODUCT = 21,
 /* others */
 JIDOSHA_LIGHT_ERROR_OTHER = 999
 };

7. User APIs JidoshaLight - User Manual - v3.19.0

© Pumatronix 25/99

mailto:contato@pumatronix.com.br

 enum JidoshaLightReturnCodeNetwork {
 /* network errors */
 JIDOSHA_LIGHT_ERROR_SERVER_CONNECT_FAILED = 100,
 JIDOSHA_LIGHT_ERROR_SERVER_DISCONNECTED = 101,
 JIDOSHA_LIGHT_ERROR_SERVER_QUEUE_TIMEOUT = 102,
 JIDOSHA_LIGHT_ERROR_SERVER_QUEUE_FULL = 103,
 JIDOSHA_LIGHT_ERROR_SOCKET_IO_ERROR = 104,
 JIDOSHA_LIGHT_ERROR_SOCKET_WRITE_FAILED = 105,
 JIDOSHA_LIGHT_ERROR_SOCKET_READ_TIMEOUT = 106,
 JIDOSHA_LIGHT_ERROR_SOCKET_INVALID_RESPONSE = 107,
 JIDOSHA_LIGHT_ERROR_HANDLE_QUEUE_FULL = 108,
 JIDOSHA_LIGHT_ERROR_SERVER_CONN_LIMIT_REACHED = 213,
 JIDOSHA_LIGHT_ERROR_SERVER_VERSION_NOT_SUPPORTED = 214,
 JIDOSHA_LIGHT_ERROR_SERVER_NOT_READY = 215
 };

 /* Raw image pixel format */
 enum JidoshaLightRawImgFmt {
 JIDOSHA_LIGHT_IMG_FMT_XRGB_8888 = 0,
 JIDOSHA_LIGHT_IMG_FMT_RGB_888 = 1,
 JIDOSHA_LIGHT_IMG_FMT_LUMA = 2,
 JIDOSHA_LIGHT_IMG_FMT_YUV420 = 3
 };

 //==
 // TYPES
 //==
 // JidoshaLightConfig
 //==
 typedef struct JidoshaLightConfig
 {
 int configId; // Unique Configuration ID
 int vehicleType; // Vehicle type
 int processingMode; // Processing Mode
 int timeout; // Processing timeout in milliseconds
 int countryCode; // Plate Syntax Country

 float minProbPerChar; // Range [0,1] - Minimal probability to accept a
 // given character recognition
 int maxLowProbabilityChars; // Max number of characters whose propability is lower
 // than minProbPerChar to accept a recognition
 char lowProbabilityChar; // ASCII encoded character that will replace characters
 // with probability lower than minProbPerChar
 float avgPlateAngle; // Average plate angle
 float avgPlateSlant; // Average plate slant
 int maxCharHeight; // Max acceptable char height in pixels (0 == default value)
 int minCharHeight; // Min acceptable char height in pixels (0 == default value)
 int maxCharWidth; // Max acceptable char width in pixels (0 == default value)
 int minCharWidth; // Min acceptable char width in pixels (0 == default value)
 int avgCharHeight; // Average char height in pixels (0 == default value)
 int avgCharWidth; // Average char width in pixels (0 == default value)

 int xRoi[4]; // ROI points - x coords
 int yRoi[4]; // ROI points - y coords

 } JidoshaLightConfig;

 //==
 // JidoshaLightRecognition
 //==
 typedef struct JidoshaLightRecognitionInfo
 {
 double totalTime;
 double localizationTime;
 double segmentationTime;
 double classificationTime;
 double loadDecodeTime;
 int libVersion[3];
 char libSHA1[41];

 } JidoshaLightRecognitionInfo;

 typedef struct JidoshaLightRecognition
 {
 int frameId; // Unique Recognition ID
 char plate[8]; // Plate text + byte 0 (null-terminated string)
 float probabilities[7]; // Range [0,1] - Recognition probability of each character

 int xText; // Plate up-left corner X coord
 int yText; // Plate up-left corner Y coord
 int widthText; // Plate Width
 int heightText; // Plate Height

 int xChar[7]; // Individual character up-left corner X coord
 int yChar[7]; // Individual character up-left corner Y coord
 int widthChar[7]; // Individual character width
 int heightChar[7]; // Individual character height

 int textColor; // 0: dark text over bright background,
 // 1: bright text over dark background

 int isMotorcycle; // 0: false, 1: true
 int countryCode; // ISO 3166-1

 JidoshaLightRecognitionInfo info; // Overall recognition benchmark information

 } JidoshaLightRecognition;

 //==
 // JidoshaLightLicenseInfo
 //==
 typedef struct JidoshaLightLicenseInfo
 {
 uint64_t serial;
 char customer[64];
 int maxThreads;
 int maxConnections;

7. User APIs JidoshaLight - User Manual - v3.19.0

© Pumatronix 26/99

 int state;
 int ttl;
 } JidoshaLightLicenseInfo;

 //==
 // JidoshaLightRecognitionList
 //==
 typedef struct JidoshaLightRecognitionList JidoshaLightRecognitionList;
 JL_API JidoshaLightRecognitionList* jidoshaLight_ANPR_createList();
 JL_API JidoshaLightRecognitionList* jidoshaLight_ANPR_duplicateList(JidoshaLightRecognitionList* list);
 JL_API int jidoshaLight_ANPR_destroyList(JidoshaLightRecognitionList* list);
 JL_API int jidoshaLight_ANPR_getListSize(JidoshaLightRecognitionList* list);
 JL_API const JidoshaLightRecognition* jidoshaLight_ANPR_getListElement(JidoshaLightRecognitionList* list, int pos);

 //==
 // JidoshaLightImage
 //==
 typedef struct JidoshaLightImage JidoshaLightImage;
 JL_API JidoshaLightImage* jidoshaLight_ANPR_createImage();
 JL_API JidoshaLightImage* jidoshaLight_ANPR_duplicateImage(JidoshaLightImage* img);
 JL_API int jidoshaLight_ANPR_destroyImage(JidoshaLightImage* img);
 JL_API int jidoshaLight_ANPR_setImageLazyDecode(JidoshaLightImage* img, int enable);
 JL_API int jidoshaLight_ANPR_loadImageFromFile(
 JidoshaLightImage* img,
 const char* filename
);
 JL_API int jidoshaLight_ANPR_loadImageFromMemory(
 JidoshaLightImage* img,
 const uint8_t* buffer,
 int bufferSize
);
 JL_API int jidoshaLight_ANPR_loadImageFromRawImgFmt(
 JidoshaLightImage* img,
 const uint8_t* buffer,
 int width,
 int height,
 int stride,
 JidoshaLightRawImgFmt fmt
);

 //==
 // Library Information
 //==
 JL_API int jidoshaLight_getVersion(int* major, int* minor, int* release);
 JL_API const char* jidoshaLight_getBuildSHA1(); // ASCII encoded SHA1
 JL_API const char* jidoshaLight_getBuildFlags(); // ASCII encoded Build Flags
 JL_API int jidoshaLight_getLicenseInfo(JidoshaLightLicenseInfo* info);
 JL_API int jidoshaLight_isRemoteApi();

 //==
 // Utilities
 //==
 JL_API const char* jidoshaLight_getReturnCodeString(int rc);

jidosha_light_api.h

 //==
 // PROCESSING
 //==
 JL_API int jidoshaLight_ANPR_fromFile (
 const char* filename,
 JidoshaLightConfig* config,
 JidoshaLightRecognition* rec
);

 JL_API int jidoshaLight_ANPR_fromMemory (
 const unsigned char* buffer,
 int bufferSize,
 JidoshaLightConfig* config,
 JidoshaLightRecognition* rec
);

 JL_API int jidoshaLight_ANPR_fromLuma (
 unsigned char* luma,
 int width,
 int height,
 JidoshaLightConfig* config,
 JidoshaLightRecognition* rec
);

 JL_API int jidoshaLight_ANPR_fromRawImgFmt (
 const unsigned char* buffer,
 int width,
 int height,
 int stride,
 JidoshaLightRawImgFmt fmt,
 JidoshaLightConfig* config,
 JidoshaLightRecognition* rec
);

 JL_API int jidoshaLight_ANPR_fromImage(
 JidoshaLightImage* img,
 JidoshaLightConfig* config,
 JidoshaLightRecognition* rec
);

 JL_API int jidoshaLight_ANPR_multi_fromImage (
 JidoshaLightImage* img,
 JidoshaLightConfig* config,
 int maxPlates,
 JidoshaLightRecognitionList* list
);

7. User APIs JidoshaLight - User Manual - v3.19.0

© Pumatronix 27/99

7.1.1.1. Types

enum JidoshaLightVehicleType

Description

Defines the license plate types that the library should search for in the image.

Members

JIDOSHA_LIGHT_VEHICLE_TYPE_CAR : only car/truck/bus plates (single-line layout)

JIDOSHA_LIGHT_VEHICLE_TYPE_MOTO : only motorcycle plates (two-line layout)

JIDOSHA_LIGHT_VEHICLE_TYPE_BOTH : both types of plates

enum JidoshaLightMode

Description

DeOnes the processing strategies that may be used by the license plate recognition algorithm. The FAST option uses the least processing effort
available for reading, while ULTRA_SLOW uses the most. The more the processing effort, the higher the probability of successfully reading the plate.

Members

JIDOSHA_LIGHT_MODE_DISABLE : value reserved for future use. Currently has the same effect as ULTRA_SLOW.

JIDOSHA_LIGHT_MODE_FAST : the fastest processing strategy, recommended only for cases where processing time is critical

JIDOSHA_LIGHT_MODE_NORMAL : a moderate processing strategy with longer processing time and higher recognition rate than the FAST strategy

JIDOSHA_LIGHT_MODE_SLOW : slow processing strategy, with longer processing time and higher recognition rate than the NORMAL strategy

JIDOSHA_LIGHT_MODE_ULTRA_SLOW: this strategy has the longest processing time and highest recognition rate

One of the above modes must necessarily be used. Optionally, one may also select the localization strategy used by the license plate recognition
algorithm. The default option is LOCALIZATION_MODE_0. The other options currently affect only the processing of Brazilian license plates.

JIDOSHA_LIGHT_LOCALIZATION_MODE_0 : localization strategy with highest processing time and recognition rate

JIDOSHA_LIGHT_LOCALIZATION_MODE_1 : faster localization strategy, with lower recognition rate

JIDOSHA_LIGHT_LOCALIZATION_MODE_2 : fastest localization strategy, with lowest recognition rate, applicable only to car license plates and not
motorcycle plates

enum JidoshaLightCountryCode

Description

Defines the ISO 3166-1 numeric code of countries supported by the library. The availability of each country is limited by the license.

Members

JIDOSHA_LIGHT_COUNTRY_CODE_CONESUL

JIDOSHA_LIGHT_COUNTRY_CODE_ARGENTINA

JIDOSHA_LIGHT_COUNTRY_CODE_BRAZIL

JIDOSHA_LIGHT_COUNTRY_CODE_CHILE

JIDOSHA_LIGHT_COUNTRY_CODE_COLOMBIA

JIDOSHA_LIGHT_COUNTRY_CODE_MEXICO

JIDOSHA_LIGHT_COUNTRY_CODE_PARAGUAY

JIDOSHA_LIGHT_COUNTRY_CODE_URUGUAY

7. User APIs JidoshaLight - User Manual - v3.19.0

© Pumatronix 28/99

JIDOSHA_LIGHT_COUNTRY_CODE_NETHERLANDS

JIDOSHA_LIGHT_COUNTRY_CODE_FRANCE

enum JidoshaLightRawImgFmt

Description

Defines the RAW image formats supported by the library.

Members

JIDOSHA_LIGHT_IMG_FMT_XRGB_8888 : 32-bit XRGB format, with the least significant byte used for the blue channel. The most significant byte is ignored

JIDOSHA_LIGHT_IMG_FMT_RGB_888 : 24-bit RGB format, with the least significant byte used for the blue channel

JIDOSHA_LIGHT_IMG_FMT_LUMA : 8-bit format containing only the luminance channel

JIDOSHA_LIGHT_IMG_FMT_YUV420 : non-interlaced 8-bit YUV format with 4:2:0 sampling

struct JidoshaLightConfig

Description

The purpose of this structure is to configure the behavior of the library during the license plate recognition call.

Members

int configId: reserved for future use and currently ignored by the library

int vehicleType: type of plate that the library should search for. See enum JidoshaLightVehicleType

int processingMode: processing strategy to be used. See enum JidoshaLightMode

int timeout : maximum time in milliseconds for license plate recognition. The value 0 indicates there is no timeout. Values different than 0 help keep
the average processing time short - as soon as the timeout expires, the processing is interrupted and the function returns. A suitable value should be
determined based on the image resolution and the CPU

int countryCode: numeric code of the country for which license plates should be recognized. See enum JidoshaLightCountryCode

float minProbPerChar: value between 0.0f and 1.0f used to deOne the minimum probability that each plate character should have to be considered
valid (recommended: 0.85)

int maxLowProbabilityChars : maximum number of characters with probability less than minProbPerChar such that the plate is still considered valid
- a plate considered invalid will be returned as an empty string, i.e. '\0'

char lowProbabilityChar : substitution character used in place of characters with probability lower than minProbPerChar

float avgPlateAngle: average angle between license plates and the horizontal image axis

float avgPlateSlant: average angle between license plates and the vertical image axis

int maxCharHeight: maximum acceptable character height, in pixels

int minCharHeight: minimum acceptable character height, in pixels

int maxCharWidth: maximum acceptable character width, in pixels

int minCharWidth: minimum acceptable character width, in pixels

int avgCharHeight: average character height, in pixels (default value: 20)

int avgCharWidth: average character height, em pixels (default value: 7)

int xRoi[4] and int yRoi[4] : x and y coordinates of four points of the Region of Interest (ROI), in any order. A ROI is a quadrilateral inside the image,
inside which one expects to Ond license plates. The use of a ROI decreases processing time and may improve recognition rates, since it excludes
unimportant image regions where a license plate has a low probability of appearing. DeOning all coordinates equal to zero will have the ROI be ignored
and the entire image will be processed. Values larger than the image dimensions, or negative values, will result in the error return code
JIDOSHA_LIGHT_ERROR_INVALID_ROI . Changing the ROI results in the library recalculating the ROI mask, which will impact processing time for the Orst
image after the change.

Warning: ROI’s points coordinates span from (0,0) at the top-left corner of the image to (width-1, height-1) at the bottom-right corner. Thus, in a

7. User APIs JidoshaLight - User Manual - v3.19.0

© Pumatronix 29/99

800x600 imagem, the accepted range of values are (0,0) to (799,599). The 4 points must not be collinear at once.

How to measure avgPlateAngle and avgPlateSlant

struct JidoshaLightRecognitionInfo

Description

The purpose of this structure is to return information about JidoshaLight's processing time, which makes it easy to diagnose performance issues. All
times are in milliseconds.

Members

double totalTime : total image processing time (sum of remaining times).

double localizationTime: time used during license plate localization in the image.

double segmentationTime: time used to extract characters from the license plate.

double classificationTime: time used to classify the license plate characters.

double loadDecodeTime: time used reading and decoding the image file or image structure in memory.

int libVersion[3]: library version that processed the image.

char libSHA1[41] : hash identifier of the library that processed the image.

struct JidoshaLightRecognition

Description

The purpose of this strcuture is to store the license plate recognition result, including: the plate characters, the probability of each character being
correct (that is, the recognition reliability), and the plate coordinates in the image.

Members

int frameId : reserved for future use, this field is currently always zero.

char plate[8] : null-terminated 7-character license plate string, or an empty string if a license plate could not be found.

float probabilities[7]: value between 0.0 and 1.0 indicating the reliability of each character's recognition.

7. User APIs JidoshaLight - User Manual - v3.19.0

© Pumatronix 30/99

int xText and int yText: top-left coordinates of the rectangle containing all license plate characters, if it was found.

int widthText : width of the license plate rectangle.

int heightText: height of the license plate rectangle.

int xChar[7] and int yChar[7]: top-left coordinates of each of the recognized characters.

int widthChar[7] : width of the rectangle of each recognized character.

int heightChar[7]: height of the rectangle of each recognized character.

int textColor : license plate text color, 0 - black, 1 - white.

int isMotorcycle : indicates whether the license plate is that of a motorcycle, 0 - non-motorcycle, 1 - motorcycle.

int countryCode: numeric code (in ISO 3166-1 format) of the country of the recognized license plate. Possible values are deOned in enum
JidoshaLightCountryCode.

JidoshaLightRecognitionInfo info : structure containing information about processing time.

struct JidoshaLightLicenseInfo

Description

Structure used to store information about the license used by the JidoshaLight library.

Members

uint64_t serial : serial number of the license

char customer[64] : name of the client that acquired the license

int maxThreads : maximum number of enabled processing threads

int maxConnections : maximum number of enabled concurrent connections

int state : license status (see Function return codes)

int ttl : time-to-live in hours of RTC (Real Time Clock)-type licenses. If the license has no expiry time, this field has value -1

struct JidoshaLightRecognitionList

Description

Opaque type used by the library to return a list of objects of type JidoshaLightRecognition. Functions that manipulate the list insert new elements at the
end. To reset a list, you only have to destroy the current one and create a new one.

To avoid memory leaks, the user must always destroy lists that are no longer in use.

This type is not thread-safe.

Members

None

Related methods

jidoshaLight_ANPR_createList
jidoshaLight_ANPR_duplicateList
jidoshaLight_ANPR_destroyList
jidoshaLight_ANPR_getListSize
jidoshaLight_ANPR_getListElement

struct JidoshaLightImage

Description

Opaque type used by the library to load an image to be processed. When created, a JidoshaLightImage object can be used to load any number of
images, even if they are in different formats. However, subsequent calls will overwrite previously loaded contents.

The image decoding process may be delayed until the image needs to be processed if the LazyDecode mode is enabled. In that case, the load functions
only store the raw image buffer and don't process anything. This behavior is useful for client-server appliations, since the decoding computational cost

7. User APIs JidoshaLight - User Manual - v3.19.0

© Pumatronix 31/99

is delegated to the server.

To avoid memory leaks, the user must always destroy images that are no longer in use.

This type is not thread-safe.

Members

None

Related methods

jidoshaLight_ANPR_createImage
jidoshaLight_ANPR_duplicateImage
jidoshaLight_ANPR_destroyImage
jidoshaLight_ANPR_setImageLazyDecode
jidoshaLight_ANPR_loadImageFromFile
jidoshaLight_ANPR_loadImageFromMemory
jidoshaLight_ANPR_loadImageFromRawImgFmt

7.1.1.2. Methods

jidoshaLight_ANPR_createList

Function prototype

 JidoshaLightRecognitionList* jidoshaLight_ANPR_createList();

Description

Function used to create an empty JidoshaLightRecognitionList

Parameters

None

Return

A valid pointer to type JidoshaLightRecognitionList , or NULL in case of failure.

jidoshaLight_ANPR_duplicateList

Function prototype

 JidoshaLightRecognitionList* jidoshaLight_ANPR_duplicateList(JidoshaLightRecognitionList* list);

Description

Function used to duplicate a JidoshaLightRecognitionList

Parameters

JidoshaLightRecognitionList* list : pointer to a JidoshaLightRecognitionList object

Return

A valid pointer to type JidoshaLightRecognitionList , or NULL in case of failure.

jidoshaLight_ANPR_destroyList

Function prototype

 int jidoshaLight_ANPR_destroyList(JidoshaLightRecognitionList* list);

Description

Function used to destroy objects created by functions jidoshaLight_ANPR_createList and jidoshaLight_ANPR_duplicateList.

7. User APIs JidoshaLight - User Manual - v3.19.0

© Pumatronix 32/99

Parameters

JidoshaLightRecognitionList* list : a valid pointer to a JidoshaLightRecognitionList object

Return

Return code JIDOSHA_LIGHT_SUCCESS in case of success, or another code otherwise. (see Function return codes).

jidoshaLight_ANPR_getListSize

Function prototype

 int jidoshaLight_ANPR_getListSize(JidoshaLightRecognitionList* list);

Description

Function used to read the number of elements stored inside the list.

Parameters

JidoshaLightRecognitionList* list : a valid pointer to a JidoshaLightRecognitionList object

Return

Number of elements in the list (greater than or equal to zero) or -1 in case of failure (invalid *list*).

jidoshaLight_ANPR_getListElement

Function prototype

 const JidoshaLightRecognition* jidoshaLight_ANPR_getListElement(JidoshaLightRecognitionList* list, int pos);

Description

Function used to retrieve the pointer to the element in position pos in the list. The contents of the returned pointer cannot be changed by the user
(const).

Parameters

JidoshaLightRecognitionList* list : a valid pointer to a JidoshaLightRecognitionList object

int pos: position of the element to be retrieve, in the range [0,ListSize)

Return

A valid pointer to an immutable object of type JidoshaLightRecognition or NULL in case of failure (invalid *list or out-of-range pos).

jidoshaLight_ANPR_createImage

Function prototype

 JidoshaLightImage* jidoshaLight_ANPR_createImage();

Description

Function used to create a JidoshaLightImage

Parameters

None

Return

A valid pointer to type JidoshaLightImage or NULL in case of failure.

jidoshaLight_ANPR_duplicateList

7. User APIs JidoshaLight - User Manual - v3.19.0

© Pumatronix 33/99

Function prototype

 JidoshaLightImage* jidoshaLight_ANPR_duplicateList(JidoshaLightImage* img);

Description

Function used to duplicate a JidoshaLightImage. The duplicated image inherits the state of the original image.

Parameters

JidoshaLightImage* img: pointer to a JidoshaLightImage object

Return

A valid pointer to type JidoshaLightImage or NULL in case of failure.

jidoshaLight_ANPR_destroyImage

Function prototype

 int jidoshaLight_ANPR_destroyImage(JidoshaLightImage* img);

Description

Function used to destroy objects created by functions jidoshaLight_ANPR_createImage and jidoshaLight_ANPR_duplicateImage.

Parameters

JidoshaLightImage* img: a valid pointer to a JidoshaLightImage object

Return

Return code JIDOSHA_LIGHT_SUCCESS in case of success, or another code otherwise. (see Function return codes).

jidoshaLight_ANPR_setImageLazyDecode

Function prototype

 int jidoshaLight_ANPR_setImageLazyDecode(JidoshaLightImage* img, int enable);

Description

Function used to enable the LazyDecode mode (see Description in JidoshaLightImage). The change has immediate effect and invalidates any
previously loaded image.

Parameters

JidoshaLightImage* img: valid pointer to a JidoshaLightImage object

int enable : 0 disabled (default), 1 enabled

Return

Return code JIDOSHA_LIGHT_SUCCESS in case of success, or another code otherwise. (see Function return codes).

jidoshaLight_ANPR_loadImageFromFile

Function prototype

 int jidoshaLight_ANPR_loadImageFromFile (
 JidoshaLightImage* img,
 const char* filename
);

Description

Function used to load a JidoshaLightImage from a file.

7. User APIs JidoshaLight - User Manual - v3.19.0

© Pumatronix 34/99

Supported file formats: JPEG, BMP, PNG, and TIFF.

Parameters

JidoshaLightImage* img: a valid pointer to a JidoshaLightImage object

const char* filename : absolute path of the file to be loaded

Return

Return code JIDOSHA_LIGHT_SUCCESS in case of success, or another code otherwise. (see Function return codes).

jidoshaLight_ANPR_loadImageFromMemory

Function prototype

 int jidoshaLight_ANPR_loadImageFromMemory (
 JidoshaLightImage* img,
 const uint8_t* buffer,
 int bufferSize
);

Description

Function used to load a JidoshaLightImage from a file already loaded in memory.

Supported file formats: JPEG, BMP, PNG, and TIFF.

Parameters

JidoshaLightImage* img: a valid pointer to a JidoshaLightImage object

const uint8_t* buffer: pointer to the buffer containing the loaded image

int bufferSize: buffer size in bytes

Return

Return code JIDOSHA_LIGHT_SUCCESS in case of success, or another code otherwise. (see Function return codes).

jidoshaLight_ANPR_loadImageFromRawImgFmt

Function prototype

 int jidoshaLight_ANPR_loadImageFromRawImgFmt (
 JidoshaLightImage* img,
 const uint8_t* buffer,
 int width,
 int height,
 int stride,
 JidoshaLightRawImgFmt fmt
);

Description

Function used to load a JidoshaLightImage from a buffer containing an image in RAW format.

See supported formats in enum JidoshaLightRawImgFmt.

Parameters

JidoshaLightImage* img: a valid pointer to a JidoshaLightImage object

const uint8_t* buffer: pointer to the buffer containing the image in RAW format

int width: image width in pixels

int height: image height in pixels

int stride: size in bytes of one image row

JidoshaLightRawImgFmt fmt: image format

7. User APIs JidoshaLight - User Manual - v3.19.0

© Pumatronix 35/99

Return

Return code JIDOSHA_LIGHT_SUCCESS in case of success, or another code otherwise. (see Function return codes).

jidoshaLight_ANPR_fromFile

Function prototype

 int jidoshaLight_ANPR_fromFile (
 const char* filename,
 JidoshaLightConfig* config,
 JidoshaLightRecognition* rec
);

Description

Recognizes a license plate from an image file whose path is supplied by const char* filename.

Uses the conOguration deOned in JidoshaLightConfig* config and returns the recognition result in JidoshaLightRecognition* rec. If a license
plate could not be found in the image, the field rec->plate will be empty.

If an error occurs during processing, struct JidoshaLightRecognition* rec will be empty and a value different from JIDOSHA_LIGHT_SUCCESS will be
returned by the function. The possible return values are defined in enum JidoshaLightReturnCode .

See supported formats in jidoshaLight_ANPR_loadImageFromFile.

Parameters

const char* filename: path to the image file.

JidoshaLightConfig* config: pointer to the struct JidoshaLightConfig containing the library configuration. A NULL pointer for this parameter will
cause the default library configuration to be used.

JidoshaLightRecognition* rec: pointer to the struct JidoshaLightRecognition where the license plate recognition result will be stored.

Return

Return code JIDOSHA_LIGHT_SUCCESS in case of success, or another code otherwise. (see Function return codes).

jidoshaLight_ANPR_fromMemory

Function prototype

 int jidoshaLight_ANPR_fromMemory (
 const unsigned char* buffer,
 int bufferSize,
 JidoshaLightConfig* config,
 JidoshaLightRecognition* rec
);

Description

Recognizes a license plate from a buffer containing an image file previously loaded in memory.

Uses the conOguration deOned in JidoshaLightConfig* config and returns the recognition result in JidoshaLightRecognition* rec. If a license
plate could not be found in the image, the field rec->plate will be empty.

If an error occurs during processing, struct JidoshaLightRecognition* rec will be empty and a value different from JIDOSHA_LIGHT_SUCCESS will be
returned by the function. The possible return values are defined in enum JidoshaLightReturnCode .

See supported formats in jidoshaLight_ANPR_loadImageFromMemory.

Parameters

const unsigned char* buffer: byte array containing the image.

int bufferSize: array size in bytes.

JidoshaLightConfig* config: pointer to the struct JidoshaLightConfig containing the library configuration. A NULL pointer for this parameter will
cause the default library configuration to be used.

JidoshaLightRecognition* rec: pointer to the struct JidoshaLightRecognition where the license plate recognition result will be stored.

7. User APIs JidoshaLight - User Manual - v3.19.0

© Pumatronix 36/99

Return

Return code JIDOSHA_LIGHT_SUCCESS in case of success, or another code otherwise. (see Function return codes).

jidoshaLight_ANPR_fromLuma

Function prototype

 int jidoshaLight_ANPR_fromLuma (
 unsigned char* luma,
 int width,
 int height,
 JidoshaLightConfig* config,
 JidoshaLightRecognition* rec
);

Description

Recognizes a license plate from a buffer containing an image in 8-bit grayscale RAW format.

Uses the conOguration deOned in JidoshaLightConfig* config and returns the recognition result in JidoshaLightRecognition* rec. If a license
plate could not be found in the image, the field rec->plate will be empty.

If an error occurs during processing, struct JidoshaLightRecognition* rec will be empty and a value different from JIDOSHA_LIGHT_SUCCESS will be
returned by the function. The possible return values are defined in enum JidoshaLightReturnCode .

Parameters

unsigned char* luma: byte array containing the image in 8-bit grayscale RAW format.

int width: image width.

int height: image height.

JidoshaLightConfig* config: pointer to the struct JidoshaLightConfig containing the library configuration. A NULL pointer for this parameter will
cause the default library configuration to be used.

JidoshaLightRecognition* rec: pointer to the struct JidoshaLightRecognition where the license plate recognition result will be stored.

Return

Return code JIDOSHA_LIGHT_SUCCESS in case of success, or another code otherwise. (see Function return codes).

jidoshaLight_ANPR_fromRawImgFmt

Function prototype

 int jidoshaLight_ANPR_fromRawImgFmt (
 const unsigned char* buffer,
 int width,
 int height,
 int stride,
 JidoshaLightRawImgFmt fmt,
 JidoshaLightConfig* config,
 JidoshaLightRecognition* rec
);

Description

Recognizes a license plate from a buffer containing an image in one of the RAW formats defined in enum JidoshaLightRawImgFmt .

Uses the conOguration deOned in JidoshaLightConfig* config and returns the recognition result in JidoshaLightRecognition* rec. If a license
plate could not be found in the image, the field rec->plate will be empty.

If an error occurs during processing, struct JidoshaLightRecognition* rec will be empty and a value different from JIDOSHA_LIGHT_SUCCESS will be
returned by the function. The possible return values are defined in enum JidoshaLightReturnCode .

See supported formats in jidoshaLight_ANPR_loadImageFromRawImgFmt.

Parameters

const unsigned char* buffer: byte array containing the image in RAW format.

int width: image width.

7. User APIs JidoshaLight - User Manual - v3.19.0

© Pumatronix 37/99

int height: image height.

int stride: size in bytes of one image row.

JidoshaLightRawImgFmt fmt: image format.

JidoshaLightConfig* config: pointer to the struct JidoshaLightConfig containing the library configuration. A NULL pointer for this parameter will
cause the default library configuration to be used.

JidoshaLightRecognition* rec: pointer to the struct JidoshaLightRecognition where the license plate recognition result will be stored.

Return

Return code JIDOSHA_LIGHT_SUCCESS in case of success, or another code otherwise. (see Function return codes).

jidoshaLight_ANPR_fromImage

Function prototype

 int jidoshaLight_ANPR_fromImage(
 JidoshaLightImage* img,
 JidoshaLightConfig* config,
 JidoshaLightRecognition* rec
);

Description

Recognizes a license plate from a previously loaded JidoshaLightImage.

Uses the conOguration deOned in JidoshaLightConfig* config and returns the recognition result in JidoshaLightRecognition* rec. If a license
plate could not be found in the image, the field rec->plate will be empty.

If an error occurs during processing, struct JidoshaLightRecognition* rec will be empty and a value different from JIDOSHA_LIGHT_SUCCESS will be
returned by the function. The possible return values are defined in enum JidoshaLightReturnCode .

Parameters

JidoshaLightImage* img: pointer to a valid JidoshaLightImage

JidoshaLightConfig* config: pointer to the struct JidoshaLightConfig containing the library configuration. A NULL pointer for this parameter will
cause the default library configuration to be used.

JidoshaLightRecognition* rec: pointer to the struct JidoshaLightRecognition where the license plate recognition result will be stored.

Return

Return code JIDOSHA_LIGHT_SUCCESS in case of success, or another code otherwise. (see Function return codes).

jidoshaLight_ANPR_multi_fromImage

Function prototype

 int jidoshaLight_ANPR_multi_fromImage (
 JidoshaLightImage* img,
 JidoshaLightConfig* config,
 int maxPlates,
 JidoshaLightRecognitionList* list
);

Description

Recognizes multiple license plates from a previously loaded JidoshaLightImage.

Uses the conOguration deOned in JidoshaLightConfig* config and adds maxPlates recognitions to the end of
JidoshaLightRecognitionList* list . If the number of license plates found is less than the speciOed number, empty JidoshaLightRecognition
elements will be added to the list until the list has maxPlates elements.

If an error occurs, empty JidoshaLightRecognition elements will be added to the list and a return code different than JIDOSHA_LIGHT_SUCCESS will be
returned by the function (see enum JidoshaLightReturnCode).

Parameters

JidoshaLightImage* img: pointer to a valid JidoshaLightImage

7. User APIs JidoshaLight - User Manual - v3.19.0

© Pumatronix 38/99

JidoshaLightConfig* config: pointer to the struct JidoshaLightConfig containing the library configuration. A NULL pointer for this parameter will
cause the default library configuration to be used.

int maxPlates : maximum number of plates to be recognized (1 or more)

JidoshaLightRecognitionList* list : pointer to a JidoshaLightRecognitionList object to which maxPlates new JidoshaLightRecognition objects
will be added.

Return

Return code JIDOSHA_LIGHT_SUCCESS in case of success, or another code otherwise. (see Function return codes).

jidoshaLight_getVersion

Function prototype

 int jidoshaLight_getVersion(int* major, int* minor, int* release);

Description

Used to verify the library version, in major.minor.release format.

Parameters

int major, minor, release: pointers to int variables where the version numbers will be written.

Return

Always returns JIDOSHA_LIGHT_SUCCESS .

jidoshaLight_getBuildSHA1

Function prototype

 const char* jidoshaLight_getBuildSHA1();

Description

Used to verify the SHA1 hash of the library build.

Parameters

None

Return

Returns a pointer to a null-terminated string containing the build SHA1.

jidoshaLight_getBuildFlags

Function prototype

 const char* jidoshaLight_getBuildFlags();

Description

Used to verify the library's build options.

Parameters

None

Return

Returns a pointer to a null-terminated string containing the build options.

7. User APIs JidoshaLight - User Manual - v3.19.0

© Pumatronix 39/99

jidoshaLight_isRemoteApi

Function prototype

 JL_API int jidoshaLight_isRemoteApi();

Description

Checks whether the application library implements local or remote processing.

Parameters

None

Return

Returns 0 if the API implements local processing, or a different value if the processing is remote.

jidoshaLight_getLicenseInfo

Function prototype

 int jidoshaLight_getLicenseInfo(JidoshaLightLicenseInfo* info)

Description

Function used to read the license information used by the JidoshaLight library.

Parameters

JidoshaLightLicenseInfo* info: pointers to a struct JidoshaLightLicenseInfo

Return

Return code JIDOSHA_LIGHT_SUCCESS in case of success.

jidoshaLight_getReturnCodeString

Function prototype

 const char* jidoshaLight_getReturnCodeString(int rc)

Description

Function used to convert a library return code to a C string.

Parameters

int rc: some code defined in enum JidoshaLightReturnCode or enum JidoshaLightReturnCodeNetwork

Return

String representing the error code.

Function return codes

Description

The function return codes are related to the recognition process (enum JidoshaLightReturnCode) or to the remote communication process (
enum JidoshaLightReturnCodeNetwork).

Códigos

JIDOSHA_LIGHT_ERROR_FILE_NOT_FOUND : returned by functions jidoshaLight_ANPR_fromFile and jidoshaLight_ANPR_loadImageFromFile when the
specified file path does not exist.
JIDOSHA_LIGHT_ERROR_INVALID_IMAGE : returned by the image processing and loading functions. Occurs when the image is corrupted.
JIDOSHA_LIGHT_ERROR_INVALID_IMAGE_TYPE : returned by functions jidoshaLight_ANPR_fromFile, jidoshaLight_ANPR_fromMemory, and functions
that load JidoshaLightImage. Occurs when one tries to process an image in a non-supported format.

7. User APIs JidoshaLight - User Manual - v3.19.0

© Pumatronix 40/99

JIDOSHA_LIGHT_ERROR_INVALID_IMAGE_SIZE : returned by functions jidoshaLight_ANPR_fromFile, jidoshaLight_ANPR_fromMemory, and functions
that load JidoshaLightImage. Occurs when one tries to process an image whose size exceeds the limits supported by the library (ARM Zynq:
1280x960px, others: 2500x2500px).
JIDOSHA_LIGHT_ERROR_INVALID_PROPERTY : returned by all functions that have parameters. Occurs when an argument is invalid. In the case of
functions that take pointers, this code is returned when the argument is NULL (except in those cases where NULL is a valid value for the parameter).
JIDOSHA_LIGHT_ERROR_COUNTRY_NOT_SUPPORTED : returned by the ANPR functions when the country code supplied in the conOguration struct is not
supported by the library.
JIDOSHA_LIGHT_ERROR_API_CALL_NOT_SUPPORTED: returned when an API function is not available for a specific platform.
JIDOSHA_LIGHT_ERROR_INVALID_ROI : returned when an invalid region of interest is supplied. See the description of struct JidoshaLightCon=g for
more information.
JIDOSHA_LIGHT_ERROR_INVALID_HANDLE : returned when the handle passed to the function was not initialized correctly.
JIDOSHA_LIGHT_ERROR_API_CALL_HAS_NO_EFFECT: returned when an API function had no effects when executed. This can happen when a call must
be preceded by another.
JIDOSHA_LIGHT_ERROR_LICENSE_INVALID : returned by the ANPR functions when the hardkey is not present or has some issue. Contact Pumatronix
for more information.
JIDOSHA_LIGHT_ERROR_LICENSE_EXPIRED : returned by the ANPR functions when a demonstration-type hardkey has expired. Contact Pumatronix for
more information.
JIDOSHA_LIGHT_ERROR_LICENSE_MAX_THREADS_EXCEEDED : returned by the ANPR functions when the maximum number of concurrent threads
exceeds the limit allowed by the license.
JIDOSHA_LIGHT_ERROR_LICENSE_UNTRUSTED_RTC : returned by the ANPR functions when a license with expiry date has no reliable date and time
reference.
JIDOSHA_LIGHT_ERROR_OTHER : returned when an unexpected error occurs. Contact Pumatronix for technical support.
JIDOSHA_LIGHT_ERROR_SERVER_CONNECT_FAILED : returned when a remote API call cannot connect to the server.
JIDOSHA_LIGHT_ERROR_SERVER_DISCONNECTED : returned when a remote session with the server was closed unexpectedly.
JIDOSHA_LIGHT_ERROR_SERVER_QUEUE_TIMEOUT : returned when a request was discarded by the server due to timeout.
JIDOSHA_LIGHT_ERROR_SERVER_QUEUE_FULL: returned when a request was discarded by the server due to the queue being full.
JIDOSHA_LIGHT_ERROR_SOCKET_IO_ERROR : returned when a network IO error occurs during a remote session with the server.
JIDOSHA_LIGHT_ERROR_SOCKET_WRITE_FAILED : returned when an error occurs when sending messages between client and remote server.
JIDOSHA_LIGHT_ERROR_SOCKET_READ_TIMEOUT : returned when an error occurs when receiving messages between client and remote server.
JIDOSHA_LIGHT_ERROR_SOCKET_INVALID_RESPONSE : returned when an invalid response was received.
JIDOSHA_LIGHT_ERROR_HANDLE_QUEUE_FULL: returned when the pending request queue has reached the maximum size for a speciOc asynchronous
handle.
JIDOSHA_LIGHT_ERROR_SERVER_CONN_LIMIT_REACHED : returned when trying to connect to a server that alread has the maximum number of open
sessions.
JIDOSHA_LIGHT_ERROR_SERVER_VERSION_NOT_SUPPORTED : server version is not compatible with client's library version.
JIDOSHA_LIGHT_ERROR_SERVER_NOT_READY : server is starting and is unable to accept connections yet. Try again later.

7. User APIs JidoshaLight - User Manual - v3.19.0

© Pumatronix 41/99

7.1.2. JidoshaLight C/C++ (Synchronous Remote)
The Synchronous Remote API extends the local API, allowing the user to conOgure a remote server to process images remotely instead of locally. It
must be used with the libjidoshaLightRemote.so library.

The jidoshaLight_ANPR* callls deOned in the Local API are still valid, but the processing will happen remotely when the application is linked with
libjidoshaLightRemote.so.

 //==
 // FUNCTIONS
 //==
 JL_API int jidoshaLight_setRemoteSyncServerIp(
 const char* ip,
 unsigned int port
);

7.1.2.1. Methods

jidoshaLight_setRemoteSyncServerIp

Function prototype

 JL_API int jidoshaLight_setRemoteSyncServerIp(
 const char* ip,
 unsigned int port
);

Description

Globally conOgures the IP address and TCP port used to connect to a remote license plate recognition server. The session is established and closed at
each recognition call.

Parameters

const char* ip: string containing the server's IP address.

int port : the server's TCP port.

Return

Return code JIDOSHA_LIGHT_SUCCESS in case of success, or another code otherwise. (see Function return codes).

7. User APIs JidoshaLight - User Manual - v3.19.0

© Pumatronix 42/99

7.1.3. JidoshaLight C/C++ API (Asynchronous Remote)
The Asynchronous Remote API extends the Local API, allowing the user to conOgure a remote server to process images remotely instead of locally. It
must be used with the libjidoshaLightRemote.so library.

 //==
 // TYPES
 //==
 typedef struct JidoshaLightHandle JidoshaLightHandle;

 /* Recognition result callback function pointer */
 typedef void (*JCallback) (
 JidoshaLightRecognition rec,
 int rc,
 uint8_t* buffer,
 unsigned int bufferSize,
 void* arg
);

 typedef struct JidoshaLightClientConfig
 {
 int queueSize;
 const char* ip;
 int port;
 JCallback callback;
 void* arg;
 } JidoshaLightClientConfig;

 typedef struct JidoshaLightServerInfo
 {
 JidoshaLightLicenseInfo license;
 int major;
 int minor;
 int release;
 } JidoshaLightServerInfo;

 //==
 // FUNCTION CALLS
 //==
 // HANDLE
 //==
 JL_API JidoshaLightHandle* jl_async_create_handle(JidoshaLightClientConfig* clientConfig);
 JL_API int jl_async_destroy_handle(JidoshaLightHandle* handle);
 JL_API int jl_async_connect(JidoshaLightHandle* handle);
 JL_API int jl_async_connect_info(JidoshaLightHandle* handle, JidoshaLightServerInfo* info);
 JL_API int jl_async_get_localqueue_size(JidoshaLightHandle* handle);

 //==
 // PROCESSING
 //==
 JL_API int jl_async_ANPR_fromFile (
 JidoshaLightHandle* handle,
 const char* filename,
 JidoshaLightConfig* config
);

 JL_API int jl_async_ANPR_fromMemory (
 JidoshaLightHandle* handle,
 const unsigned char* buffer,
 unsigned int bufferSize,
 JidoshaLightConfig* config
);

 JL_API int jl_async_ANPR_fromLuma (
 JidoshaLightHandle* handle,
 unsigned char* luma,
 int width,
 int height,
 JidoshaLightConfig* config
);

 JL_API int jl_async_ANPR_fromRawImgFmt (
 JidoshaLightHandle* handle,
 const unsigned char* buffer,
 int width,
 int height,
 int stride,
 JidoshaLightRawImgFmt fmt,
 JidoshaLightConfig* config
);

 JL_API int jl_async_ANPR_fromImage (
 JidoshaLightHandle* handle,
 JidoshaLightImage* img,
 JidoshaLightConfig* config
);

 JL_API int jl_async_ANPR_multi_fromImage (
 JidoshaLightHandle* handle,
 JidoshaLightImage* img,
 JidoshaLightConfig* config,
 int maxPlates
);

7.1.3.1. Types

struct JidoshaLightHandle

Description

7. User APIs JidoshaLight - User Manual - v3.19.0

© Pumatronix 43/99

The purpose of this structure is to store the client object of a license plate recognition server.

Members

Nenhum

typedef void JCallback

Description

The purpose of this type is to define the user callback format for receiving events from the server.

Members

struct JidoshaLightRecognition rec: structure where the recognition result will be stored

int rc: request return code (see Function return codes)

uint8_t* buffer: pointer to the image where the recognition was made (this pointer is only valid during the callback execution)

unsigned int bufferSize: image size

void* arg: pointer to user-supplied opaque structure provided in the handle creation

struct JidoshaLightClientConfig

Description

The purpose of this structure is to define the parameters of the client-server connection.

Members

int queueSize : maximum number of pending requests for this handle.

const char* ip: string containing the server's IP address.

int port : the server's TCP port.

JCallback callback : function that will be called to process results generated by the server.

void* arg: pointer to user-supplied opaque structure used for handling server events. This pointer is repassed as a parameter to the user callback.

struct JidoshaLightServerInfo

Description

Struct used to store license and version information of a JidoshaLight server.

Members

JidoshaLightLicenseInfo license : structure containing information about the server license - see struct JidoshaLightLicenseInfo

int major : major component of the library version used by the server

int minor : minor component of the library version used by the server

int release : release component of the library version used by the server

7.1.3.2. Methods

jl_async_create_handle

Function prototype

 JidoshaLightHandle* jl_async_create_handle(
 JidoshaLightClientConfig* config
);

Description

Creates the handle of an asynchronous client for connection with a license plate recognition server.

7. User APIs JidoshaLight - User Manual - v3.19.0

© Pumatronix 44/99

Parameters

JidoshaLightClientConfig* config: configuration for this handle.

Return

Returns a pointer to a handle of type JidoshaLightHandle , or NULL in case of failure.

jl_async_destroy_handle

Function prototype

 int jl_async_destroy_handle(
 JidoshaLightHandle* handle
);

Description

Deletes the handle of an asynchronous client, closing the connection to the license plate recognition server.

Parameters

JidoshaLightHandle* handle: pointer to a handle created by jl_async_create_handle.

Return

Return code JIDOSHA_LIGHT_SUCCESS in case of success, or another code otherwise. (see Function return codes).

jl_async_connect

Function prototype

 int jl_async_connect(
 JidoshaLightHandle* handle
);

Description

Establishes a session with the license plate recognition server for a given handle. This function blocks until the connection is established or a timeout
occurs.

Parameters

JidoshaLightHandle* handle: pointer to a handle created by jl_async_create_handle.

Return

Return code JIDOSHA_LIGHT_SUCCESS in case of success, or another code otherwise. (see Function return codes).

jl_async_connect

Function prototype

 int jl_async_connect_info(
 JidoshaLightHandle* handle,
 JidoshaLightServerInfo* info
);

Description

Same functionality as function jl_async_connect, but receives an additional parameter used to store information about the server's license and version.

Parameters

JidoshaLightHandle* handle: pointer to a handle created by jl_async_create_handle.

JidoshaLightServerInfo* info : pointer to a struct JidoshaLightServerInfo that will be filled by the function.

7. User APIs JidoshaLight - User Manual - v3.19.0

© Pumatronix 45/99

Return

Return code JIDOSHA_LIGHT_SUCCESS in case of success, or another code otherwise. (see Function return codes).

jl_async_get_localqueue_size

Function prototype

 int jl_async_get_localqueue_size(
 JidoshaLightHandle* handle
);

Description

Returns the size of the client-side pending requests queue for a given handle.

Parameters

JidoshaLightHandle* handle: pointer to a handle created by jl_async_create_handle.

Return

Returns the number of pending requests in the client-side queue.

jl_async_ANPR_fromFile

Function prototype

 int jl_async_ANPR_fromFile(
 JidoshaLightHandle* handle,
 const char* filename,
 JidoshaLightConfig* config
);

Description

See description of the jidoshaLight_ANPR_fromFile method.

Parameters

JidoshaLightHandle* handle: pointer to a handle created by jl_async_create_handle.

const char* filename: see description of method jidoshaLight_ANPR_fromFile.

JidoshaLightConfig* config: see description of method jidoshaLight_ANPR_fromFile.

Return

See description of method jidoshaLight_ANPR_fromFile.

jl_async_ANPR_fromMemory

Function prototype

 int jl_async_ANPR_fromMemory(
 JidoshaLightHandle* handle,
 const unsigned char* buffer,
 unsigned int bufferSize,
 JidoshaLightConfig* config
);

Description

See description of method jidoshaLight_ANPR_fromMemory.

Parameters

JidoshaLightHandle* handle: pointer to a handle created by jl_async_create_handle.

const unsigned char* buffer: see description of method jidoshaLight_ANPR_fromMemory.

7. User APIs JidoshaLight - User Manual - v3.19.0

© Pumatronix 46/99

unsigned int bufferSize: see description of method jidoshaLight_ANPR_fromMemory.

JidoshaLightConfig* config: see description of method jidoshaLight_ANPR_fromMemory.

Return

See description of method jidoshaLight_ANPR_fromMemory.

jl_async_ANPR_fromLuma

Function prototype

 int jl_async_ANPR_fromLuma(
 JidoshaLightHandle* handle,
 unsigned char* luma,
 int width,
 int height,
 JidoshaLightConfig* config
);

Description

See description of method jidoshaLight_ANPR_fromLuma.

Parameters

JidoshaLightHandle* handle: Pointer to a handle created by jl_async_create_handle.

unsigned char* luma: See description of method jidoshaLight_ANPR_fromLuma.

int width: See description of method jidoshaLight_ANPR_fromLuma.

int height: See description of method jidoshaLight_ANPR_fromLuma.

JidoshaLightConfig* config: See description of method jidoshaLight_ANPR_fromLuma.

Return

See description of method jidoshaLight_ANPR_fromLuma.

jl_async_ANPR_fromRawImgFmt

Function prototype

 int jl_async_ANPR_fromRawImgFmt (
 JidoshaLightHandle* handle,
 const unsigned char* buffer,
 int width,
 int height,
 int stride,
 JidoshaLightRawImgFmt fmt,
 JidoshaLightConfig* config,
 JidoshaLightRecognition* rec
);

Description

See description of method jidoshaLight_ANPR_fromRawImgFmt.

Parameters

JidoshaLightHandle* handle: Pointer to a handle created by jl_async_create_handle.

const unsigned char* buffer: See description of method jidoshaLight_ANPR_fromRawImgFmt.

int width: See description of method jidoshaLight_ANPR_fromRawImgFmt.

int height: See description of method jidoshaLight_ANPR_fromRawImgFmt.

int stride: See description of method jidoshaLight_ANPR_fromRawImgFmt.

JidoshaLightRawImgFmt fmt: See description of method jidoshaLight_ANPR_fromRawImgFmt.

JidoshaLightConfig* config: See description of method jidoshaLight_ANPR_fromRawImgFmt.

JidoshaLightRecognition* rec: See description of method jidoshaLight_ANPR_fromRawImgFmt.

7. User APIs JidoshaLight - User Manual - v3.19.0

© Pumatronix 47/99

Return

See description of method jidoshaLight_ANPR_fromRawImgFmt.

jl_async_ANPR_fromImage

Function prototype

 int jl_async_ANPR_fromImage (
 JidoshaLightHandle* handle,
 JidoshaLightImage* img,
 JidoshaLightConfig* config
);

Description

See description of method jidoshaLight_ANPR_fromImage.

Parameters

JidoshaLightHandle* handle: Pointer to a handle created by jl_async_create_handle

JidoshaLightImage* img: See description of method jidoshaLight_ANPR_fromImage

JidoshaLightConfig* config: See description of method jidoshaLight_ANPR_fromImage

Return

See description of method jidoshaLight_ANPR_fromImage

jl_async_ANPR_multi_fromImage

Function prototype

 int jl_async_ANPR_multi_fromImage (
 JidoshaLightHandle* handle,
 JidoshaLightImage* img,
 JidoshaLightConfig* config,
 int maxPlates
);

Description

Recognizes multiple plates from a previously loaded JidoshaLightImage, causing multiple calls to the callback function. A set of recognitions belonging
to the same image may be identified by the int frameId field in struct JidoshaLightRecognition.

See description of method jidoshaLight_ANPR_multi_fromImage for more details.

Parameters

JidoshaLightHandle* handle: Pointer to a handle created by jl_async_create_handle

JidoshaLightImage* img: See description of method jidoshaLight_ANPR_multi_fromImg

JidoshaLightConfig* config: See description of method jidoshaLight_ANPR_multi_fromImg

int maxPlates : See description of method jidoshaLight_ANPR_multi_fromImg

Return

See description of method jidoshaLight_ANPR_multi_fromImg

7. User APIs JidoshaLight - User Manual - v3.19.0

© Pumatronix 48/99

file:///home/jenkins/work/workspace/dosha-light-multibranch_master_2/resources/doc/anpr/func-jidoshalight-anpr-multi-fromimage
file:///home/jenkins/work/workspace/dosha-light-multibranch_master_2/resources/doc/anpr/func-jidoshalight-anpr-multi-fromimage
file:///home/jenkins/work/workspace/dosha-light-multibranch_master_2/resources/doc/anpr/func-jidoshalight-anpr-multi-fromimage
file:///home/jenkins/work/workspace/dosha-light-multibranch_master_2/resources/doc/anpr/func-jidoshalight-anpr-fromimage

7.1.4. JidoshaLight C/C++ API (Server)
The Server API extends the Local API, allowing the user the create and conOgure a license plate recognition server for use with remote APIs. It must be
used with the libjidoshaLight.so library.

 //==
 // TYPES
 //==
 typedef struct JidoshaLightServer JidoshaLightServer;

 typedef struct JidoshaLightServerConfig
 {
 int port;
 int conns;
 int threads;
 int threadQueueSize;
 int queueTimeout;
 } JidoshaLightServerConfig;

 //==
 // FUNCTIONS
 //==
 JL_API JidoshaLightServer* jidoshaLightServer_create(
 JidoshaLightServerConfig* serverConfig
);

 JL_API int jidoshaLightServer_destroy(
 JidoshaLightServer* handler
);

7.1.4.1. Types

struct JidoshaLightServer

Description

The purpose of this structure is to store the license plate recognition server object.

Members

None

struct JidoshaLightServerConfig

Description

The purpose of this structure is to configure the library when working as a license plate recognition server.

Members

int port : TCP port number used for message exchange.

int conns: number of simultaneous connections accepted by the server.

int threads : number of parallel processing threads started by the server.

int threadQueueSize: maximum size of the request queue for each processing thread.

int queueTimeout : maximum waiting time for a request in the request queue, in milliseconds (ms). The value 0 indicates that there is no timeout.

7.1.4.2. Methods

jidoshaLightServer_create

Function prototype

 JidoshaLightServer* jidoshaLightServer_create(
 JidoshaLightServerConfig* serverConfig
);

Description

Creates a license plate recognition server instance. Uses the conOguration struct pointed by JidoshaLightServerConfig* serverConfig and returns
a pointer to handler of type JidoshaLightServer .

Parameters

serverConfig : pointer to struct JidoshaLightServerConfig with the server configuration

7. User APIs JidoshaLight - User Manual - v3.19.0

© Pumatronix 49/99

Return

Returns a pointer to the handle of type JidoshaLightServer , or NULL in case of failure.

jidoshaLightServer_destroy

Function prototype

 int jidoshaLightServer_destroy(
 JidoshaLightServer* handler
);

Description

Deletes the server instance identified by its handler.

Parameters

handler : pointer to the server instance

Return

Return code JIDOSHA_LIGHT_SUCCESS in case of success, or another code otherwise. (see Function return codes).

7. User APIs JidoshaLight - User Manual - v3.19.0

© Pumatronix 50/99

7.2. JidoshaLight Java API
There are differences between the Linux and the Android™ versions of JidoshaLight's Java API.

The Linux version is a simple wrapper over the C API, while the Android™ version has specialized processing functions that better Ot this development
environment. Methods that are specific to one or the other platform are specified in the method description.

7.2.1. JidoshaLight Java API (Local)

 public class JidoshaLight {

 //==
 // CODES
 //==
 /* enum JidoshaLightVehicleType */
 public static final int VEHICLE_TYPE_CAR = 1;
 public static final int VEHICLE_TYPE_MOTO = 2;
 public static final int VEHICLE_TYPE_BOTH = 3;

 /* enum JidoshaLightMode */
 public static final int MODE_DISABLE = 0;
 public static final int MODE_FAST = 1;
 public static final int MODE_NORMAL = 2;
 public static final int MODE_SLOW = 3;
 public static final int MODE_ULTRA_SLOW = 4;

 /* enum JidoshaLightCountryCode */
 public static final int COUNTRY_CODE_ARGENTINA = 32;
 public static final int COUNTRY_CODE_BRAZIL = 76;
 public static final int COUNTRY_CODE_CHILE = 152;
 public static final int COUNTRY_CODE_COLOMBIA = 170;
 public static final int COUNTRY_CODE_MEXICO = 484;
 public static final int COUNTRY_CODE_PARAGUAY = 600;
 public static final int COUNTRY_CODE_PERU = 604;
 public static final int COUNTRY_CODE_URUGUAY = 858;
 public static final int COUNTRY_CODE_NETHERLANDS = 528;
 public static final int COUNTRY_CODE_FRANCE = 250;

 /* enum JidoshaLightReturnCode */
 /* success */
 public static final int SUCCESS = 0;
 /* basic errors */
 public static final int ERROR_FILE_NOT_FOUND = 1;
 public static final int ERROR_INVALID_IMAGE = 2;
 public static final int ERROR_INVALID_IMAGE_TYPE = 3;
 public static final int ERROR_INVALID_PROPERTY = 4;
 public static final int ERROR_COUNTRY_NOT_SUPPORTED = 5;
 public static final int ERROR_API_CALL_NOT_SUPPORTED = 6;
 public static final int ERROR_INVALID_ROI = 7;
 public static final int ERROR_INVALID_HANDLE = 8;
 public static final int ERROR_API_CALL_HAS_NO_EFFECT = 9;
 public static final int ERROR_INVALID_IMAGE_SIZE = 10;
 /* license errors */
 public static final int ERROR_LICENSE_INVALID = 16;
 public static final int ERROR_LICENSE_EXPIRED = 17;
 public static final int ERROR_LICENSE_MAX_THREADS_EXCEEDED = 18;
 public static final int ERROR_LICENSE_UNTRUSTED_RTC = 19;
 /* others */
 public static final int ERROR_OTHER = 999;

 /* enum JidoshaLightReturnCodeNetwork */
 /* network errors */
 public static final int ERROR_SERVER_CONNECT_FAILED = 100;
 public static final int ERROR_SERVER_DISCONNECTED = 101;
 public static final int ERROR_SERVER_QUEUE_TIMEOUT = 102;
 public static final int ERROR_SERVER_QUEUE_FULL = 103;
 public static final int ERROR_SOCKET_IO_ERROR = 104;
 public static final int ERROR_SOCKET_WRITE_FAILED = 105;
 public static final int ERROR_SOCKET_READ_TIMEOUT = 106;
 public static final int ERROR_SOCKET_INVALID_RESPONSE = 107;
 public static final int ERROR_HANDLE_QUEUE_FULL = 108;
 public static final int ERROR_SERVER_CONN_LIMIT_REACHED = 213;
 public static final int ERROR_SERVER_VERSION_NOT_SUPPORTED = 214;
 public static final int ERROR_SERVER_NOT_READY = 215;

 /* Raw image pixel format */
 public static final int IMG_FMT_XRGB_8888 = 0;
 public static final int IMG_FMT_RGB_888 = 1;
 public static final int IMG_FMT_LUMA = 2;
 public static final int IMG_FMT_YUV420 = 3;

 //==
 // TYPES
 //==
 public static class Config {
 public int vehicleType = VEHICLE_TYPE_BOTH;
 public int processingMode = MODE_ULTRA_SLOW;
 public int timeout = 0;
 public int countryCode = COUNTRY_CODE_BRAZIL;

 public float minProbPerChar = 0.85f;
 public int maxLowProbabilityChars = 0;
 public byte lowProbabilityChar = '?';
 public float avgPlateAngle = 0.0f;
 public float avgPlateSlant = 0.0f;
 public int maxCharHeight = 60;
 public int minCharHeight = 9;
 public int maxCharWidth = 40;
 public int minCharWidth = 1;

7. User APIs JidoshaLight - User Manual - v3.19.0

© Pumatronix 51/99

 public int avgCharHeight = 20;
 public int avgCharWidth = 7;

 public int[] xRoi = new int[4];
 public int[] yRoi = new int[4];
 }

 public static class Recognition {
 public String plate;
 public float[] probabilities;

 public int xText;
 public int yText;
 public int widthText;
 public int heightText;

 public int[] xChar;
 public int[] yChar;
 public int[] widthChar;
 public int[] heightChar;

 public int textColor;
 public int isMotorcycle;
 public int countryCode;

 /* JidoshaLightJidoshaLightRecognitionInfo */
 public double totalTime;
 public double localizationTime;
 public double segmentationTime;
 public double classificationTime;
 public double loadDecodeTime;
 public int[] libVersion;
 public String libSHA1;
 }

 public static class LicenseInfo {
 public String serial;
 public String customer;
 public int maxThreads;
 public int maxConnections;
 public int state;
 public int ttl;
 }

 public static class Version {
 public int major;
 public int minor;
 public int release;
 }

 /* STATIC METHODS */
 /* PROCESSING [LINUX ONLY] */
 public static native int ANPR_fromFile(
 String filename,
 Config config,
 Recognition rec
);

 public static native int ANPR_fromMemory(
 byte[] buffer,
 int bufferSize,
 Config config,
 Recognition rec
);

 public static native int ANPR_fromLuma(
 byte[] luma,
 int width,
 int height,
 Config config,
 Recognition rec
);

 /* PROCESSING [ANDROID ONLY] */
 public static native int ANPR_fromBitmap(
 Bitmap bitmap,
 Config config,
 Recognition rec
);

 public static int ANPR_fromUri(
 Context context,
 Uri uri,
 Config config,
 Recognition rec
);

 /* PROCESSING [LINUX AND ANDROID] */
 public static native int ANPR_fromImage(
 JidoshaLightImage img,
 Config config,
 Recognition rec
);

 public static native int ANPR_multi_fromImage(
 JidoshaLightImage img,
 Config config,
 int maxPlates,
 List<Recognition> recList
);

 //==
 // LICENSE [ANDROID]
 //==
 public static final int LICENSE_REQUEST_OK = 200;
 public static final int LICENSE_REQUEST_BAD_REQUEST = 400;
 public static final int LICENSE_REQUEST_NOT_FOUND = 404;

7. User APIs JidoshaLight - User Manual - v3.19.0

© Pumatronix 52/99

 public static final int LICENSE_REQUEST_UNAUTHORIZED = 401;
 public static final int LICENSE_REQUEST_FORBIDDEN = 403;
 public static final int LICENSE_REQUEST_PAYMENT_REQUIRED = 402;
 public static final int LICENSE_REQUEST_INTERNAL_SERVER_ERROR = 500;
 public static final int LICENSE_REQUEST_SERVICE_UNAVAILABLE = 503;
 public static final int LICENSE_REQUEST_ORIGIN_IS_UNREACHABLE = 523;

 public static native String getAndroidFingerprint(Activity androidActivity);
 public static native int getLicenseFromServer(Activity activity, String savePath, String user, String key);
 public static native int setLicenseFromData(Activity androidActivity, byte[] data, int dataSize);

 /* STATUS */
 public static native int getVersion(Version version);
 public static native String getBuildSHA1();
 public static native String getBuildFlags();

 //==
 // LICENSE STATUS
 //==
 public static native int getLicenseInfo(LicenseInfo info);

 //==
 // SHARED LIBRARY LOADER
 //==
 public static void loadLibrary() {
 System.loadLibrary("jidoshaLightJava");
 }

 }

7.2.1.1. Types

class JidoshaLightImage

Description

Has the same functionalities as the struct JidoshaLightImage function of the C API.

Public methods

 public JidoshaLightImage();

Builds a new object of type JidoshaLightImage . If the native handle allocation fails, a RuntimeException is thrown.

To avoid memory leaks, all JidoshaLightImage objects must be explicitly destroyed by the user by calling the destroy() function.

 public JidoshaLightImage duplicate();

Duplicates an object of type JidoshaLightImage that was previously created and loaded in memory. The new object must be destroyed by the user by
calling the destroy() function.

 public int destroy();

Frees the memory allocated by the object.

 public int setLazyDecode(boolean enable);

See struct JidoshaLightImage of the C API.

 public int loadFromFile(String filename);

See struct JidoshaLightImage of the C API.

 public int loadFromMemory(byte[] buffer);

See struct JidoshaLightImage of the C API.

 public int loadFromRawImgFmt(byte[] buffer, int width, int height, int stride, int fmt);

See struct JidoshaLightImage of the C API.

7. User APIs JidoshaLight - User Manual - v3.19.0

© Pumatronix 53/99

class JidoshaLight.Config

Description

Has the same functionalities as the struct JidoshaLightConfig function of the C API.

Members

int vehicleType: type of plate that the library should search for. Possible values for this field are:

JidoshaLight.VEHICLE_TYPE_CAR: see JIDOSHA_LIGHT_VEHICLE_TYPE_CAR.

JidoshaLight.VEHICLE_TYPE_MOTO: see JIDOSHA_LIGHT_VEHICLE_TYPE_MOTO.

JidoshaLight.VEHICLE_TYPE_BOTH: see JIDOSHA_LIGHT_VEHICLE_TYPE_BOTH.

int processingMode: processing strategy to be used. Possible values for this field are:

JidoshaLight.MODE_DISABLE: see JIDOSHA_LIGHT_MODE_DISABLE.

JidoshaLight.MODE_FAST: see JIDOSHA_LIGHT_MODE_FAST.

JidoshaLight.MODE_NORMAL: see JIDOSHA_LIGHT_MODE_NORMAL.

JidoshaLight.MODE_SLOW: see JIDOSHA_LIGHT_MODE_SLOW.

JidoshaLight.MODE_ULTRA_SLOW: see JIDOSHA_LIGHT_MODE_ULTRA_SLOW.

int timeout : see C API.

int countryCode: see C API.

float minProbPerChar: see C API.

int maxLowProbabilityChars : see C API.

byte lowProbabilityChar : see C API.

float avgPlateAngle: see C API.

float avgPlateSlant: see C API.

int maxCharHeight: see C API.

int minCharHeight: see C API.

int maxCharWidth : see C API.

int minCharWidth : see C API.

int avgCharHeight: see C API.

int avgCharWidth : see C API.

int xRoi[] and int yRoi[]: x and y coordinates of four points of the Region of Interest (ROI). See C API for more information.

class JidoshaLight.Recognition

Description

Concatenates the functionalities of types struct JidoshaLightRecognition and struct JidoshaLightRecognitionInfo of the C API.

Members

String plate: string containing the characters of the recognized license plate, or an empty string if a license plate could not be found.

float probabilities[] : see C API.

int frameId : see C API.

int xText and int yText: see C API.

int widthText : see C API.

int heightText: see C API.

int xChar[] and int yChar[] : see C API.

7. User APIs JidoshaLight - User Manual - v3.19.0

© Pumatronix 54/99

int widthChar[]: see C API.

int heightChar[] : see C API.

int textColor : see C API.

int isMotorcycle : see C API.

double totalTime : see C API.

double localizationTime: see C API.

double segmentationTime: see C API.

double classificationTime: see C API.

double loadDecodeTime: see C API.

int libVersion[] : see C API.

String libSHA1[] : see C API.

class JidoshaLight.LicenseInfo

Description

Type used by the getLicenseInfo function to return information about the library license.

Members

String serial : serial number of the license in decimal base

String customer : name of the client that acquired the license

int maxThreads : maximum number of enabled processing threads

int maxConnections : maximum number of enabled concurrent connections

int state : license status (see Function return codes)

int ttl : time-to-live in hours of RTC (Real Time Clock)-type licenses. If the license has no expiry time, this field has value -1

class JidoshaLight.Version

Description

Type used by the getVersion function to return the library version.

Members

int major: major value of the version.

int minor: minor value of the version.

int release : release value of the version.

7.2.1.2. Methods

JidoshaLight.ANPR_fromImage [LINUX and ANDROID]

Function prototype

 public static native int ANPR_fromImage(
 JidoshaLightImage img,
 Config config,
 Recognition rec
);

Description

Has the same behavior as the jidoshaLight_ANPR_fromImage function of the C API.

Parameters

7. User APIs JidoshaLight - User Manual - v3.19.0

© Pumatronix 55/99

img : object of type JidoshaLightImage containing the image to be recognized.

config: object of type JidoshaLight.Config containing the conOguration to be used by the library. Passing a null in this parameter implies the use of
the default library configuration.

rec : object of type JidoshaLight.Recognition where the recognition result will be stored.

Return

Return code JidoshaLight.SUCCESS in case of success, or another code otherwise. (see 7.2.1.3. Function return codes).

JidoshaLight.ANPR_multi_fromImage [LINUX and ANDROID]

Function prototype

 public static native int ANPR_multi_fromImage(
 JidoshaLightImage img,
 Config config,
 int maxPlates,
 List<Recognition> recList
);

Description

Has the same behavior as the jidoshaLight_ANPR_multi_fromImage of the C API.

Parameters

img : object of type JidoshaLightImage containing the image to be recognized.

config: object of type JidoshaLight.Config containing the conOguration to be used by the library. Passing a null in this parameter implies the use of
the default library configuration.

maxPlates : maximum number of plates to be recognized (1 to 8).

recList : list of objects of type JidoshaLight.Recognition where the recognition results will be stored. Has size equal to maxPlates if the function
returns successfully.

Return

Return code JidoshaLight.SUCCESS in case of success, or another code otherwise. (see 7.2.1.3. Function return codes).

JidoshaLight.ANPR_fromFile [LINUX]

Function prototype

 public static native int ANPR_fromFile(
 String filename,
 Config config,
 Recognition rec
);

Description

Has the same behavior as the jidoshaLight_ANPR_fromFile function of the C API.

Parameters

filename : string containing the path to the image file to be recognized.

config: object of type JidoshaLight.Config containing the conOguration to be used by the library. Passing a null in this parameter implies the use of
the default library configuration.

rec : object of type JidoshaLight.Recognition where the recognition result will be stored.

Return

Return code JidoshaLight.SUCCESS in case of success, or another code otherwise. (see 7.2.1.3. Function return codes).

JidoshaLight.ANPR_fromMemory [LINUX]

7. User APIs JidoshaLight - User Manual - v3.19.0

© Pumatronix 56/99

Function prototype

 public static native int ANPR_fromMemory(
 byte[] buffer,
 int bufferSize,
 Config config,
 Recognition rec
);

Description

Has the same behavior as the jidoshaLight_ANPR_fromMemory function of the C API.

Parameters

buffer: byte array containing the image.

bufferSize : array size in bytes.

config: object of type JidoshaLight.Config containing the conOguration to be used by the library. Passing a null in this parameter implies the use of
the default library configuration.

rec : object of type JidoshaLight.Recognition where the recognition result will be stored.

Return

Return code JidoshaLight.SUCCESS in case of success, or another code otherwise. (see 7.2.1.3. Function return codes).

JidoshaLight.ANPR_fromLuma [LINUX]

Function prototype

 public static native int ANPR_fromLuma(
 byte[] luma,
 int width,
 int height,
 Config config,
 Recognition rec
);

Description

Has the same behavior as the jidoshaLight_ANPR_fromLuma function of the C API.

Parameters

luma : byte array containing the image in 8-bit grayscale RAW format.

width : image width.

height: image height.

config: object of type JidoshaLight.Config containing the conOguration to be used by the library. Passing a null in this parameter implies the use of
the default library configuration.

rec : object of type JidoshaLight.Recognition where the recognition result will be stored.

Return

Return code JidoshaLight.SUCCESS in case of success, or another code otherwise. (see 7.2.1.3. Function return codes).

JidoshaLight.ANPR_fromBitmap [ANDROID]

Function prototype

 public static native int ANPR_fromBitmap (
 Bitmap bitmap,
 Config config,
 Recognition rec
);

Description

Recognizes a license plate from a bitmap object using the conOguration present in config. The recognition result is returned in rec . If an error occurs

7. User APIs JidoshaLight - User Manual - v3.19.0

© Pumatronix 57/99

during procesing, the rec object will contain an empty string for the license plate and a value other than JidoshaLight.SUCCESS will be returned by the
function. The possible return values are defined in class JidoshaLight and have the prefix ERROR_.

Parameters

bitmap: object of type android.graphics.Bitmap containing the image to be recognized in ARGB8888 format.

config: object of type JidoshaLight.Config containing the conOguration to be used by the library. Passing a null in this parameter implies the use of
the default library configuration.

rec : object of type JidoshaLight.Recognition where the recognition result will be stored.

Return

Return code JidoshaLight.SUCCESS in case of success, or another code otherwise. (see 7.2.1.3. Function return codes).

JidoshaLight.ANPR_fromUri [ANDROID]

Function prototype

 public static int ANPR_fromUri(
 Context context,
 Uri uri,
 Config config,
 Recognition rec
);

Description

Recognizes a plate from an image Ole Uri . Internally, this method calls function ANPR_fromBitmap . The recognition result is returned in rec . If an error
occurs during processing, the rec object will contain an empty string for the license plate and a value other than JidoshaLight.SUCCESS will be
returned by the function. The possible return values are defined in class JidoshaLight and have the prefix ERROR_.

Parameters

context : object of type android.content.Context containing the Activity context.

uri : object of type android.net.Uri containing the uri of the image to be recognized.

config: object of type JidoshaLight.Config containing the conOguration to be used by the library. Passing a null in this parameter implies the use of
the default library configuration.

rec : object of type JidoshaLight.Recognition where the recognition result will be stored.

Return

Return code JidoshaLight.SUCCESS in case of success, or another code otherwise. (see 7.2.1.3. Function return codes).

JidoshaLight.getAndroidFingerprint [ANDROID]

Function prototype

static native String getAndroidFingerprint(Activity androidActivity);

Description

Returns the unique identifier generated by the library installation.

Parameters

androidActivity : object of type android.app.Activity containing the reference to the application's main Activity.

Return

String containing the unique identifier needed to generate the license file. This string must not be changed.

JidoshaLight.getLicenseFromServer [ANDROID]

Protótipo da Função

static native int getLicenseFromServer(Activity activity, String savePath, String user, String key);

7. User APIs JidoshaLight - User Manual - v3.19.0

© Pumatronix 58/99

Descrição

Request a license file from Pumatronix license server.

Parâmetros

activity : object of type android.app.Activity containing the reference to the application's main Activity.

savePath : path to save the received file

user : user to be used for the request; null otherwise;

key : key to be used for the request; null otherwise;

Retorno

JidoshaLight.LICENSE_REQUEST_OK
JidoshaLight.LICENSE_REQUEST_BAD_REQUEST
JidoshaLight.LICENSE_REQUEST_NOT_FOUND
JidoshaLight.LICENSE_REQUEST_UNAUTHORIZED
JidoshaLight.LICENSE_REQUEST_FORBIDDEN
JidoshaLight.LICENSE_REQUEST_PAYMENT_REQUIRED
JidoshaLight.LICENSE_REQUEST_INTERNAL_SERVER_ERROR
JidoshaLight.LICENSE_REQUEST_SERVICE_UNAVAILABLE
JidoshaLight.LICENSE_REQUEST_ORIGIN_IS_UNREACHABLE

See Android sample for more information.

JidoshaLight.setLicenseFromData [ANDROID]

Function prototype

static native int setLicenseFromData(Activity androidActivity, byte[] data, int dataSize);

Description

This method is used to configure the library's license file from the contents of the byte[] data buffer.

Parameters

androidActivity : object of type android.app.Activity containing the reference to the application's main Activity.

data : buffer with the license file contents.

dataSize : size of the license file - data.len

Return

Return code JidoshaLight.SUCCESS in case of success, or another code otherwise. (see 7.2.1.3. Function return codes).

JidoshaLight.getVersion

Function prototype

 public static native int getVersion(Version version);

Description

Returns the library version in major.minor.release format.

Parameters

version : object of type JidoshaLight.Version with the version number

Return

Always returns JidoshaLight.SUCCESS .

7. User APIs JidoshaLight - User Manual - v3.19.0

© Pumatronix 59/99

JidoshaLight.getBuildSHA1

Function prototype

 String getBuildSHA1();

Description

Has the same behavior as the jidoshaLight_getBuildSHA1 function of the C API.

Parameters

None

Return

Returns a String containing the build's SHA1 hash.

JidoshaLight.getBuildFlags

Function prototype

String getBuildFlags();

Description

Has the same behavior as the jidoshaLight_getBuildFlags function of the C API.

Parameters

None

Return

Returns a String containing the library's build flags.

JidoshaLight.getLicenseInfo

Function prototype

 public static native int getLicenseInfo(LicenseInfo info);

Description

Function used to read information about the license used the JidoshaLight library.

Parameters

info : object of type JidoshaLight.LicenseInfo

Return

Returns JIDOSHA_LIGHT_SUCCESS in case of success.

7.2.1.3. Function return codes

Description

The codes returned the JidoshaLight library functions are defined as public static final int attributes inside the JidoshaLight class.

Codes returned in Linux and ANDROID versions of the SDK

JidoshaLight.ERROR_FILE_NOT_FOUND : returned by the ANPR_fromFile and ANPR_fromUri functions when the specified file path does not exist
JidoshaLight.ERROR_INVALID_IMAGE : returned by the ANPR functions. Occurs when the image is corrupted.
JidoshaLight.ERROR_INVALID_IMAGE_TYPE: returned by the ANPR functions. Occurs when one tries to process an image in an unsupported format.
This error code is not returned by the Android version of the API
JidoshaLight.ERROR_INVALID_PROPERTY : returned by all functions that have parameters. Occurs when the argument is invalid
JidoshaLight.ERROR_COUNTRY_NOT_SUPPORTED : returned by the ANPR functions when the country code supplied in the conOguration structure is
not supported by the library

7. User APIs JidoshaLight - User Manual - v3.19.0

© Pumatronix 60/99

JidoshaLight.ERROR_API_CALL_NOT_SUPPORTED : returned when an API function is not supported for a specific platform
JidoshaLight.ERROR_INVALID_ROI : returned when an invalid region of interest is supplied. See the description of struct JidoshaLightConfig
for more information
JidoshaLight.ERROR_INVALID_HANDLE : returned when the handle passed to the function was not initialized correctly
JidoshaLight.ERROR_API_CALL_HAS_NO_EFFECT : returned when an API function had no effect when executed. This can happen when a call must
be preceded by another.
JidoshaLight.ERROR_LICENSE_INVALID : returned by the ANPR functions when the supplied license is invalid (for license of the hardkey type, this
means the hardkey is not connected or has some issue). Contact Pumatronix for more information
JidoshaLight.ERROR_LICENSE_EXPIRED : returned by the ANPR functions when a demonstration-type license has expired. Contact Pumatronix for
more information
JidoshaLight.ERROR_LICENSE_MAX_THREADS_EXCEEDED: returned by the ANPR functions when the maximum number of concurrent threads
exceeds the limit allowed by the license
JidoshaLight.ERROR_LICENSE_UNTRUSTED_RTC : returned by the ANPR functions when a license with expiry date has no reliable date and time
reference
JidoshaLight.ERROR_OTHER: returned when an unexpected error occurs. Contact Pumatronix for technical support

7. User APIs JidoshaLight - User Manual - v3.19.0

© Pumatronix 61/99

7.2.2. JidoshaLight Java API (Asynchronous Remote)

Note: All Asynchronous Remote API functions are available for Android and Linux.

 package br.gaussian.jidoshalight;

 public class JidoshaLightRemote {

 //==
 // TYPES
 //==
 public static class Config {
 public int queueSize;
 public String ip;
 public int port;
 }

 public static class ServerInfo {
 public JidoshaLight.LicenseInfo license;
 public JidoshaLight.Version version;
 }

 //==
 // Callback interface
 //==
 public interface CallBacks {
 void on_lpr_result_cb(JidoshaLight.Recognition rec, int code, byte[] buffer);
 }

 //==
 // FUNCTION CALLS
 //==
 public static native long create_handle(Config config, CallBacks callbacks);
 public static native int destroy_handle(long handle);
 public static native int connect(long handle);
 public static native int connect_info(long handle, ServerInfo info);
 public static native int get_localqueue_size(long handle);
 public static native int ANPR_fromMemory (
 long handle,
 byte[] buffer,
 JidoshaLight.Config config
);
 public static native int ANPR_fromRawImgFmt (
 long handle,
 byte[] buffer,
 int width,
 int height,
 int stride,
 int fmt,
 JidoshaLight.Config config
);

 //==
 // LIBRARY STATUS
 //==
 public static class Version {
 public int major;
 public int minor;
 public int release;
 }

 public static native int getVersion(Version version);
 public static native String getBuildSHA1();
 public static native String getBuildFlags();

 }

7.2.2.1. Types

class JidoshaLightRemote.Config

Description

The purpose of this structure is to store the client object of a license plate recognition server.

Members

queueSize : maximum number of pending requests for this handle.

ip : string containing the server's IP address.

port : the server's TCP port.

interface JidoshaLightRemote.CallBacks

Description

The purpose of this interface is to define the user callback format for receiving events from the server.

7. User APIs JidoshaLight - User Manual - v3.19.0

© Pumatronix 62/99

Members

on_lpr_result_cb(JidoshaLight.Recognition rec, int code, byte[] buffer)

rec : object containing the recognition result
code : request return code
buffer: buffer containing the image to be recognized

class JidoshaLightRemote.ServerInfo

Description

Type used to store license and version information of a JidoshaLight server.

Members

JidoshaLight.LicenseInfo license : object containing information about the server license

JidoshaLight.Version version : library version used by the server

interface JidoshaLightRemote.CallBacks

7.2.2.2. Methods

JidoshaLightRemote.create_handle

Function prototype

 long create_handle (Config config, CallBacks callbacks);

Description

Creates a handle for an asynchronous client for connection with a license plate recognition server. A call to destroy_handle must be made to free
allocated resources.

Parameters

A JidoshaLightRemote.Config object containing the server conOguration parameters and an object that implements the
JidoshaLightRemote.CallBacks interface.

Return

In case of success, returns the memory address of the created handle. Returns 0 otherwise.

JidoshaLightRemote.destroy_handle

Function prototype

 int destroy_handle (long handle);

Description

Frees the resources allocated to the handle. To avoid incorrect reuse of an already-released handle, it is recommended that, after this function call, the
handle is set to 0 , i.e. mHandle = 0;.

Parameters

A long containing the memory address of a valid JidoshaLightRemote handle.

Return

JidoshaLight.SUCCESS in case of success.

7. User APIs JidoshaLight - User Manual - v3.19.0

© Pumatronix 63/99

JidoshaLightRemote.connect

Function prototype

 int connect (long handle);

Description

Establishes a session with the license plate recognition server for a given handle.

Parameters

long handle : long containing the memory address of a valid JidoshaLightRemote handle.

Return

JidoshaLight.SUCCESS in case of success. Otherwise, see error codes.

JidoshaLightRemote.connect_info

Function prototype

 int connect_info(long handle, ServerInfo info);

Description

Has the same behavior as the connect function but has an additional parameter to receive information about the server's license and version.

Parameters

long handle : long containing the memory address of a valid JidoshaLightRemote handle.

ServerInfo* info : object of type JidoshaLightRemote.ServerInfo

Return

JidoshaLight.SUCCESS in case of success. Otherwise, see error codes.

JidoshaLightRemote.get_localqueue_size

Function prototype

 int get_localqueue_size (long handle);

Description

Returns the size of the client-side pending requests queue for a given handle.

Parameters

A long containing the memory address of a valid JidoshaLightRemote handle.

Return

Returns the number of pending requests in the local queue (client-side).

JidoshaLightRemote.ANPR_fromMemory

Function prototype

 int ANPR_fromMemory (
 long handle,
 byte[] buffer,
 JidoshaLight.Config config
);

Description

7. User APIs JidoshaLight - User Manual - v3.19.0

© Pumatronix 64/99

Remote version of the JidoshaLight.ANPR_fromMemory function.

Parameters

handle: long containing the memory address of a valid JidoshaLightRemote handle.

buffer: byte array containing the image to be recognized in JPEG, PNG, or BMP format.

config: object of type JidoshaLight.Config containing the conOguration to be used by the library. Passing a null in this parameter implies the use of
the default library configuration.

Return

JidoshaLight.SUCCESS in case of success. Otherwise, see error codes.

JidoshaLightRemote.ANPR_fromRawImgFmt

Function prototype

 int ANPR_fromRawImgFmt (
 long handle,
 byte[] buffer,
 int width,
 int height,
 int stride,
 int fmt,
 JidoshaLight.Config config
);

Description

Sends a license plate recognition request from an image in RAW format.

Parameters

handle: long containing the memory address of a valid JidoshaLightRemote handle.

buffer: byte array containing the image to be recognized in one of the supported RAW formats (see definitions in class JidoshaLight).

width : image width

height: image height

stride: size in bytes of one image row

fmt : image format (see definitions in class JidoshaLight).

config: object of type JidoshaLight.Config containing the conOguration to be used by the library. Passing a null in this parameter implies the use of
the default library configuration.

Return

JidoshaLight.SUCCESS in case of success. Otherwise, see error codes.

JidoshaLightRemote.getVersion

Function prototype

 public static native int getVersion(Version version);

Description

Returns the library version in major.minor.release format.

Parameters

version : object of type Version with the version number

Return

Always returns JidoshaLight.SUCCESS .

7. User APIs JidoshaLight - User Manual - v3.19.0

© Pumatronix 65/99

JidoshaLightRemote.getBuildSHA1

Function prototype

String getBuildSHA1();

Description

Has the same behavior as the jidoshaLight_getBuildSHA1 function of the C API.

Parameters

None

Return

Returns a String containing the build's SHA1 hash.

JidoshaLightRemote.getBuildFlags

Function prototype

String getBuildFlags();

Description

Has the same behavior as the jidoshaLight_getBuildFlags function of the C API.

Parameters

None

Return

Returns a String containing the library's build flags.

7. User APIs JidoshaLight - User Manual - v3.19.0

© Pumatronix 66/99

7.2.3. JidoshaLight Java API (Server)

Note: All Server API functions are available for Android and Linux.

 package br.gaussian.jidoshalight;

 public class JidoshaLightServer {

 //==
 // TYPES
 //==
 public static class Config {
 public int port = 51000;
 public int conns = 1;
 public int threads = 8;
 public int threadQueueSize = 1000;
 public int queueTimeout = 0;
 }

 //==
 // FUNCTION CALLS
 //==
 public static native long create_handle(Config config);
 public static native int destroy_handle(long handle);

 //==
 // LIBRARY STATUS
 //==
 public static class Version {
 public int major;
 public int minor;
 public int release;
 }

 public static native int getVersion(Version version);
 public static native String getBuildSHA1();
 public static native String getBuildFlags();

 }

7.2.3.1. Types

class JidoshaLightServer.Config

Description

Configuration type for a license plate recognition server.

Members

port : server connection port.

conns : number of simultaneous connections accepted by the server (maximum value limited by the license)

threads : maximum number of processing threads the server can use (maximum value limited by the license). The threads are shared among
connections

threadQueueSize : maximum size of the request queue for each processing thread

queueTimeout : maximum waiting time for a request in the request queue, in milliseconds (ms)

7.2.3.2. Methods

JidoshaLightServer.create_handle

Function prototype

 long create_handle (Config config);

Description

Creates and initializes a handle to a license plate recognition server. A call to destroy_handle must be made to release the allocated resources.

Parameters

A JidoshaLightServer.Config object containing the configuration parameters of the server.

Return

In case of success, returns the memory address of the created handle. Otherwise, returns 0.

7. User APIs JidoshaLight - User Manual - v3.19.0

© Pumatronix 67/99

JidoshaLightServer.destroy_handle

Function prototype

 void destroy_handle (long handle);

Description

Frees the resources allocated to the handle. To avoid incorrect reuse of an already-released handle, it is recommended that, after this function call, the
handle is set to 0 , i.e. mHandle = 0;.

Parameters

A long containing the memory address of a valid JidoshaLightServer handle.

Return

0 if the handle cannot be created. Otherwise, returns a value different than zero.

JidoshaLightServer.getVersion

Function prototype

 public static native int getVersion(Version version);

Description

Returns the library version in major.minor.release format.

Parameters

version : object of Version type with the number version

Return

Always returns JidoshaLight.SUCCESS .

JidoshaLightServer.getBuildSHA1

Function prototype

String getBuildSHA1();

Description

Has the same behavior as the jidoshaLight_getBuildSHA1 function of the C API.

Parameters

None

Return

Returns a String containing the build's SHA1 hash.

JidoshaLightServer.getBuildFlags

Function prototype

String getBuildFlags();

Description

Has the same behavior as the jidoshaLight_getBuildFlags function of the C API.

Parameters

7. User APIs JidoshaLight - User Manual - v3.19.0

© Pumatronix 68/99

None

Return

Returns a String containing the library's build flags.

7. User APIs JidoshaLight - User Manual - v3.19.0

© Pumatronix 69/99

7.2.4. JidoshaLight Java API (IO/Mjpeg)
This API provides a receiver for videos in the MJPEG format (Motion JPEG). This video format is widely used by IP cameras.

Note: All functions of the IO/Mjpeg API are available for Android and Linux.

 package br.gaussian.io;

 public class Mjpeg {

 //==
 // Error Codes
 //==
 public static final int JL_FRAME_QUEUE_FULL = 211;
 public static final int JL_LAST_FRAME_UNAVAILABLE = 212;
 public static final int JL_MJPEG_HTTP_HEADER_OVERFLOW = 1001;
 public static final int JL_MJPEG_HTTP_RESPONSE_NOT_OK = 1002;
 public static final int JL_MJPEG_HTTP_CONTENT_TYPE_ERROR = 1003;
 public static final int JL_MJPEG_HTTP_CONTENT_LENGTH_ERROR = 1004;
 public static final int JL_MJPEG_HTTP_FRAME_BOUNDARY_NOT_FOUND = 1005;
 public static final int JL_MJPEG_CONNECTION_CLOSED = 1006;
 public static final int JL_MJPEG_CONNECT_FAILED = 1007;

 //==
 // Config interface
 //==
 public static class Config {
 public String url;
 public int timeout;
 public int bufferSize;
 }

 //==
 // Callback interface
 //==
 public interface Callbacks {
 void frame_cb(byte[] frame);
 void error_cb(int code);
 }

 public static native long create_handle(Callbacks callbacks, Config config);
 public static native void destroy_handle(long handle);
 public static native int connect(long handle);
 public static native byte[] get_frame(long handle);

 }

7.2.4.1. Types

class Mjpeg.Config

Description

Configuration type for an Mjpeg stream.

Members

url : String containing the Mjpeg stream URL in the http://<IP>[:PORT]/[PATH] format.

timeout : maximum interval between frames in milliseconds. Delays larger than timeout are handled as connection loss. (Recommended values: 1000
to 5000).

bufferSize : maximum number of frames that can be queued. This parameter must be larger than 0 and preferably equal to 1. Values larger than 1
should be considered for cases when the frame_cb callback function can take more time than the time interval between stream frames.

interface Mjpeg.Callbacks

Description

Interface that defines the callbacks generated by the Mjpeg stream.

Note 1: the callback execution cannot take too long (see parameter bufferSize).

Note 2: under no circumstances should destroy_handle(long handle) be called from inside a callback.

Members

void frame_cb(byte[] frame): callback that is called whenever a new frame is available. The frame is in JPEG format.

void error_cb(int code) : callback that is called whenever an error occurs in the Mjpeg stream (see error deOnition below). Whenever there is a
disconnection error, the stream will try to reestablish connection automatically. To interrupt this process, the user should destroy the handle.

7. User APIs JidoshaLight - User Manual - v3.19.0

© Pumatronix 70/99

7.2.4.2. Methods

Mjpeg.create_handle

Function prototype

 long create_handle (
 Callbacks callbacks,
 Config config
);

Description

Creates a handle to be used with function of the Mjpeg class. A call to destroy_handle must be made to free the allocated resources.

Parameters

An object that implements the interface Mjpeg.Callbacks interface and a Mjpeg.Config object containing the stream configuration parameters.

Return

In case of success, returns the memory address of the created handle. Otherwise, returns 0.

Mjpeg.destroy_handle

Function prototype

void destroy_handle (long handle);

Description

Frees the resources allocated to the handle. To avoid incorrect reuse of an already-released handle, it is recommended that, after this function call, the
handle is set to 0 , i.e. mHandle = 0;.

Parameters

A long containing the memory address of a valid Mjpeg handle.

Return

0 if the handle cannot be created. Otherwise, returns a value different than zero.

Mjpeg.connect

Function prototype

void connect (long handle);

Description

Attempts to estasblish a connectino with the URL defined during creationg of the Mjpeg handle.

Parameters

A long containing the memory address of a valid Mjpeg handle.

Return

JidoshaLight.SUCCESS in case of success.

Mjpeg.JL_MJPEG_CONNECT_FAILED if the connection cannot be established immediately. In this case, the handle will not try to reconnect automatically,
and it is up to the user to call connect again at an approriate time.

Mjpeg.get_frame

Function prototype

byte[] get_frame(long handle)

7. User APIs JidoshaLight - User Manual - v3.19.0

© Pumatronix 71/99

Description

Returns the most recent frame from the Mjpeg reception queue. Consecutive calls to this function may return the same frame, if no new frame has been
received since the previous call.

Parameters

A long containing the memory address of a valid Mjpeg handle.

Return

A byte array containing the last frame received in JPEG format. If no frame has been received until the call, the function returns an array of size 0 (
byteArray.length == 0) and the error_cb callback is called with code JL_LAST_FRAME_UNAVAILABLE .

7. User APIs JidoshaLight - User Manual - v3.19.0

© Pumatronix 72/99

7.3. Migration Guide - Jidosha C/C++ API 1
The migration process of a PC application that uses the legacy JIDOSHA API 1 to an application using JidoshaLight is simple and quick. The lePlaca
function must be replaced by the jidoshaLight_ANPR_fromFile function. struct JidoshaConfig must be replaced by struct JidoshaLightConfig
and struct Reconhecimento by struct JidoshaLightRecognition. The user should mind the new conOguration Oelds in JidoshaLight, which must
be filled with the correct values.

The following example shows how to obtain the same behavior of JIDOSHA with JidoshaLight.

JIDOSHA

 #include <stdio.h>
 #include "jidoshaCore.h"

 int main(int argc, char* argv[])
 {
 Reconhecimento rec;
 JidoshaConfig config;
 config.tipoPlaca = JIDOSHA_TIPO_PLACA_AMBOS;
 config.timeout = 1000;
 lePlaca(argv[1], &config, &rec);
 printf("placa: %s\n", rec.placa);
 return 0;
 }

JidoshaLight

 #include <stdio.h>
 #include "anpr/api/jidosha_light_api.h"

 int main(int argc, char* argv[])
 {
 JidoshaLightRecognition rec;
 JidoshaLightConfig config = {0};
 config.vehicleType = JIDOSHA_LIGHT_VEHICLE_TYPE_BOTH;
 config.processingMode = JIDOSHA_LIGHT_MODE_ULTRA_SLOW;
 config.timeout = 1000;
 config.countryCode = JIDOSHA_LIGHT_COUNTRY_CODE_BRAZIL;
 config.maxLowProbabilityChars = 0;
 config.minProbPerChar = 0.85;
 config.lowProbabilityChar = '?';
 jidoshaLight_ANPR_fromFile(argv[1], &config, &rec);
 printf("placa: %s\n", rec.plate);
 return 0;
 }

Observations:

struct JidoshaLightConfig config is initialized with zero {0} , guaranteeing that the Oelds int xRoi[4] and int yRoi[4] are zero and
disabling the use of a ROI.
The processing mode JIDOSHA_LIGHT_MODE_ULTRA_SLOW is the one that most closely resembles the processing strategy used by the JIDOSHA
library.

The SDK includes a more detailed sample application.

7. User APIs JidoshaLight - User Manual - v3.19.0

© Pumatronix 73/99

8. JIDOSHA user APIs
To ease the use and migration to the JidoshaLight library, legacy JIDOSHA APIs are also available through the libjidoshaCore.so and
jidoshaCore.dll libraries. It is possible to switch the JIDOSHA library by these new Oles and achieve the same behavior. The Oles with the JIDOSHA
interface can be found in the jidoshapc folder inside the Windows or Linux SDK.

The API (Application Programming Interface) of the JIDOSHA library is written in C, which allows it to be used from practically any programming
environment. The SDK includes wrapper libraries to simplify use of JIDOSHA from .NET (C# and VB.NET), Java and Delphi. These wrappers simply wrap
the calls to the library functions, performing any necessary conversion of parameters and results.

The entire C API can be included with a single header file, jidoshaCore.h , whose contents are display below. A detailed description is also shown.

The library can be used in two ways: through API 1 or API 2. The design principle behind API 1 is ease of use. It is possible to read license plates by
calling a single function (lePlaca or lePlacaFromMemory in C language).

API 2, on the other hand, was created to allow more Uexibility in conOguration and image loading. For instance, it is possible to conOgure the minimum
number of characters that have to be read with good reliability for a license plate to be considered valid. It is possible to add new parameters to API 2
without affecting existing users of the library (that is, those users can update their JIDOSHA DLL/.so to a more recent version without recompiling). Also,
API 2 allows the use of RAW images, either grayscale or RGB/BGR. Compatibility with other image formats might be added if necessary.

We recommend API 1 for users who want to integrate JIDOSHA to their application as quickly as possible, and API 2 for those who want more control
over the library.

jidoshaCore.h

#define JIDOSHA_TIPO_PLACA_CARRO 1 /* recognize only non-motorcycle plates */
 #define JIDOSHA_TIPO_PLACA_MOTO 2 /* recognize only motorcycle plates */
 #define JIDOSHA_TIPO_PLACA_AMBOS 3 /* recognize all plates */

 enum jidoshaError {
 JIDOSHA_SUCCESS = 0,
 JIDOSHA_ERROR_HARDKEY_NOT_FOUND,
 JIDOSHA_ERROR_HARDKEY_NOT_AUTHORIZED,
 JIDOSHA_ERROR_FILE_NOT_FOUND,
 JIDOSHA_ERROR_INVALID_IMAGE,
 JIDOSHA_ERROR_INVALID_IMAGE_TYPE,
 JIDOSHA_ERROR_INVALID_PROPERTY,
 JIDOSHA_ERROR_OTHER = 999,
 };

 /* OCR parameters */
 typedef struct JidoshaConfig
 {
 int tipoPlaca; /* indicates the plate type the OCR should recognize
 use JIDOSHA_TIPO_PLACA_CARRO,
 JIDOSHA_TIPO_PLACA_MOTO,
 or JIDOSHA_TIPO_PLACA_AMBOS */
 int timeout; /* timeout in milliseconds */
 } JidoshaConfig;

 /* OCR result */
 typedef struct Reconhecimento
 {
 char placa[8]; /* null-terminated, 7 character plate, or an empty string
 if the plate was not found */
 double probabilities[7]; /* values from 0.0 to 1.0 indicating the
 reliability of each recognized character */
 int xText; /* left coordinate of the plate text rectangle */
 int yText; /* top coordinate of the plate text rectangle */
 int widthText; /* width of the plate text rectangle */
 int heightText; /* height of the plate text rectangle */
 int textColor; /* text color, 0 - dark, 1 - light */
 int isMotorcycle; /* 0 – non-motorcycle plate, 1 - motorcycle plate */

 } Reconhecimento;

 /* Run OCR on a buffer containing a coded image (JPG, BMP etc)
 returns an empty plate if no hardkey was found or if it is unauthorized */
 int lePlacaFromMemory(const unsigned char* stream, int n, JidoshaConfig* config, Reconhecimento* rec);

 /* Run OCR on an image file
 returns an empty plate if no hardkey was found or if it is unauthorized */
 int lePlaca(const char* filename, JidoshaConfig* config, Reconhecimento* rec);

 /* Library version */
 int getVersion(int* major, int* minor, int* release);

 /* Hardkey serial number */
 int getHardkeySerial(unsigned long* serial);

 /* Hardkey state
 state == 0 -> unauthorized
 state == 1 -> authorized
 retorno == 0 -> hardkey found
 retorno == 1 -> hardkey not found */
 JIDOSHACORE_API int getHardkeyState(int* state);

 /* Remaining time of demonstration hardkey
 days==-1 and hours==-1: not a demo hardkey (infinite duration)
 */
 int getHardkeyRemainingTime(int* days, int* hours);

 /* API 2 **/

8. JIDOSHA user APIs JidoshaLight - User Manual - v3.19.0

© Pumatronix 74/99

 /* Default API configuration:
 int tipoPlaca = 3 (JIDOSHA_TIPO_PLACA_AMBOS)
 int timeout = 0
 int minNumChars = 7
 int maxNumChars = 7
 int minCharWidth = 1
 int avgCharWidth = 7
 int maxCharWidth = 40
 int minCharHeight = 9
 int avgCharHeight = 20
 int maxCharHeight = 60
 double minPlateAngle = -30.00
 double avgPlateAngle = 0.00
 double maxPlateAngle = 30.00
 double minProbPerCharacter = 0.80
 char lowProbabilityChar = '*'
 */

 /* Recognitions linked list */
 typedef struct ResultList
 {
 struct ResultList* next;
 struct Reconhecimento* reconhecimento;
 } ResultList;

 /* Free memory from a result list */
 void jidoshaFreeResultList(ResultList* list);

 typedef void JidoshaHandle; /* handle for API2 */
 typedef void JidoshaImage; /* image handle for API2 */

 /* Initialize API2's handle
 use one handle per thread for multithreaded programs */
 JIDOSHACORE_API JidoshaHandle* jidoshaInit();

 /* Destroy a previously allocated handle */
 JIDOSHACORE_API int jidoshaDestroy(JidoshaHandle* handle);

 /* Set the value of an integer property */
 JIDOSHACORE_API int jidoshaSetIntProperty(JidoshaHandle* handle, const char* name, int value);
 /* Read the value of an integer property */
 JIDOSHACORE_API int jidoshaGetIntProperty(JidoshaHandle* handle, const char* name, int* value);

 /* Set the value of a double property */
 JIDOSHACORE_API int jidoshaSetDoubleProperty(JidoshaHandle* handle, const char* name, double value);
 /* Read the value of a double property */
 JIDOSHACORE_API int jidoshaGetDoubleProperty(JidoshaHandle* handle, const char* name, double* value);

 /* Set the value of a char property */
 JIDOSHACORE_API int jidoshaSetCharProperty(JidoshaHandle* handle, const char* name, char value);
 /* Read the value of a char property */
 JIDOSHACORE_API int jidoshaGetCharProperty(JidoshaHandle* handle, const char* name, char* value);

 /* Run OCR on a loaded image */
 JIDOSHACORE_API int jidoshaFindFirst(JidoshaHandle* handle, JidoshaImage* image, ResultList* list);

 /* Run OCR on a loaded image to read from the second plate onwards
 The first plate should be read by jidoshaFindFirst. */
 JIDOSHACORE_API int jidoshaFindNext(JidoshaHandle* handle, JidoshaImage* image, ResultList* list);

 /* Load a jpg or bmp image from a file */
 JIDOSHACORE_API int jidoshaLoadImage(const char* filename, JidoshaImage** img);

 /* Load a jpg, bmp of RAW image (grayscale or RGB/BGR)
 from a memory buffer */
 JIDOSHACORE_API int jidoshaLoadImageFromMemory(const unsigned char* buf, int n, int type, int width, int height, JidoshaImage** img)

 /* Free a previously loaded image */
 JIDOSHACORE_API int jidoshaFreeImage(JidoshaImage** img);

 /* String to identify the library build */
 JIDOSHACORE_API const char* jidoshaBuildInfo();

 /* Number of authorized threads */
 JIDOSHACORE_API int jidoshaNumThreads();

8. JIDOSHA user APIs JidoshaLight - User Manual - v3.19.0

© Pumatronix 75/99

8.1.1. JIDOSHA C/C++ API 1

8.1.1.1. Types

struct JidoshaConfig

Description

This structure is used to configure the library's behavior when running license plate recognition.

Members

int tipoPlaca : indicates the type of plate which the OCR must search. It must be among the following values:

JIDOSHA_TIPO_PLACA_CARRO : only car license plates are searched, where "car" means "non-motorcycle", that is, it includes cars, trucks, buses
etc.
JIDOSHA_TIPO_PLACA_MOTO : only motorcycle license plates will be searched.
JIDOSHA_TIPO_PLACA_AMBOS: both motorcycle and non-motorcycle license plates will be searched.

int timeout : indicates the maximum time that the plate recognition should take, in milliseconds. A value of zero indicates no timeout. A non-zero
timeout is useful in keeping a low average processing time. This value should be determined base on the image resolution and the CPU used.

struct Reconhecimento

Description

This structure is used to store results from license plate recognition, including: the plate characters, the reliability of each character, and the coordinates
of the plate in the image.

Members

char placa[8] : null-terminated, 7 character plate string, or an empty string if the plate was not found.

double probabilities[7]: values from 0.0 to 1.0 indicating the reliability of each recognized character.

int xText and int yText: top-left coordinates of the plate text rectangle.

int widthText : width of the plate text rectangle.

int heightText: height of the plate text rectangle.

int textColor : text color, 0 - dark, 1 - light.

int isMotorcycle : 0 - non-motorcycle plate, 1 - motorcycle plate.

8.1.1.2. Methods

lePlaca

Function prototype

int lePlaca(const char* filename, JidoshaConfig* config, Reconhecimento* rec);

Description

Recognizes the license plate and stores it in a Reconhecimento object. The image should be passed as a Olepath pointing to an image Ole. If no plate is
found, or if the hardkey is unauthorized or could not be found, the Reconhecimento object will contain an empty string as the plate.

The image file should be in BMP, JPEG, or PNG format.

Parameters

filename : path to the image file.

config: pointer to the JidoshaConfig struct with the configuration for the library.

rec : pointer to the struct Reconhecimento that stores the processing result.

8. JIDOSHA user APIs JidoshaLight - User Manual - v3.19.0

© Pumatronix 76/99

Return

Error code: 0 in case of success, otherwise a non-zero number.

lePlacaFromMemory

Function prototype

int lePlacaFromMemory(const unsigned char* stream, int n, JidoshaConfig* config, Reconhecimento*rec);

Description

Recognizes the license plate and stores it in a Reconhecimento object. The image should be passed as a byte array, where the number of bytes should
be indicated by parameter n. If no plate is found, or if the hardkey is unauthorized or could not be found, the Reconhecimento object will contain an
empty string as the plate.

The image file should be in BMP, JPEG, or PNG format.

Parameters

stream: byte array containing the image.

n: length of the byte array.

config: pointer to the JidoshaConfig struct with the library configuration.

rec : pointer to the struct Reconhecimento where the processing result will be stored.

Return

Error code: 0 in case of success, otherwise a non-zero number.

getVersion

Function prototype

int getVersion(int* major, int* minor, int* release);

Description

Used to get the library version, in major.minor.release format.

Parameters

major : pointer to an int variable where the major number will be written.

minor : pointer to an int variable where the minor number will be written.

release : pointer to an int variable where the release number will be written.

Return

Always returns 0.

getHardkeySerial

Function prototype

int getHardkeySerial(unsigned long* serial);

Description

Used to get the hardkey serial number.

Parameters

serial: pointer to unsigned long variable where the hardkey serial number will be written.

Return

8. JIDOSHA user APIs JidoshaLight - User Manual - v3.19.0

© Pumatronix 77/99

Returns 0 in case of success, 1 if the hardkey was not found.

getHardkeyState

Function prototype

int getHardkeyState(int* state);

Description

Used to get the hardkey state. If state is equal to 0, the hardkey is unauthorized; if state is equal to 1, the hardkey is authorized.

Parameters

state : pointer to an int variable where the hardkey state will be written.

Return

Returns 0 in case of success, 1 if the hardkey was not found.

getHardkeyRemainingTime

Function prototype

int getHardkeyRemainingTime(int* days, int* hours);

Description

Used to get the remaining time for a demonstration-type license. If days and hours both equal -1 there is no time limit.

Parameters

days : pointer to an int variable that will store the number of days left.

hours : pointer to an int variable that will store the number of hours left.

Return

Returns 0 in case of success, 1 if the hardkey was not found.

8. JIDOSHA user APIs JidoshaLight - User Manual - v3.19.0

© Pumatronix 78/99

8.1.2. JIDOSHA C/C++ API 2

8.1.2.1. Types

struct ResultList

Description

This structure is used to store the linked list with processing results from the jidoshaFindFirst and jidoshaFindNext functions.

Members

struct ResultList* next: pointer to the next node of the list. NULL if the current node is the last.

struct Reconhecimento* reconhecimento: pointer to the struct containing one license plate recognition result.

typedef void JidoshaHandle

Description

Type used to represent memory allocated for the library configuration.

typedef void JidoshaImage

Description

Type used to represent memory allocated for an image.

8.1.2.2. Methods

jidoshaFreeResultList

Function prototype

void jidoshaFreeResultList(ResultList* list);

Description

Frees the memory allocated for the results linked list.

Parameters

list : pointer to a ResultList struct.

Return

None.

jidoshaInit

Function prototype

JidoshaHandle* jidoshaInit();

Description

Allocates memory for the library configuration. In the multithread case, each thread must call jidoshaInit and use its own JidoshaHandle .

Parameters

None.

Return

Pointer to a JidoshaHandle that must be used when calling other API2 functions.

8. JIDOSHA user APIs JidoshaLight - User Manual - v3.19.0

© Pumatronix 79/99

jidoshaDestroy

Function prototype

int jidoshaDestroy(JidoshaHandle* handle);

Description

Frees the memory allocated by the jidoshaInit function.

Parameters

handle: pointer to a JidoshaHandle previously allocated by jidoshaInit.

Return

JIDOSHA_SUCCESS.

jidoshaSetIntProperty

Function prototype

int jidoshaSetIntProperty(JidoshaHandle* handle, const char* name, int value);

Description

Changes the value of an int variable of the library configuration.

Parameters

handle: pointer to a JidoshaHandle .

name : string containing the name of the property to be set.

value : value that shall be set to the property.

Return

JIDOSHA_SUCCESS if the value is changed, JIDOSHA_ERROR_INVALID_PROPERTY if the property does not exist or is not of type int.

jidoshaGetIntProperty

Function prototype

int jidoshaGetIntProperty(JidoshaHandle* handle, const char* name, int* value);

Description

Reads the value of an int variable from the library configuration.

Parameters

handle: pointer to a JidoshaHandle .

name : string containing the name of the property to be read.

value : pointer to an int variable where the value of the property will be stored.

Return

JIDOSHA_SUCCESS if the value is read, JIDOSHA_ERROR_INVALID_PROPERTY if the property does not exist or is not of type int.

jidoshaSetDoubleProperty

Function prototype

int jidoshaSetDoubleProperty(JidoshaHandle* handle, const char* name, double value);

8. JIDOSHA user APIs JidoshaLight - User Manual - v3.19.0

© Pumatronix 80/99

Description

Changes the value of a double variable from the library configuration.

Parameters

handle: pointer to a JidoshaHandle .

name : string containing the name of the property to be set.

value : value that shall be set to the property.

Return

JIDOSHA_SUCCESS if the value is changed, JIDOSHA_ERROR_INVALID_PROPERTY if the property does not exist or is not of type double.

jidoshaGetDoubleProperty

Function prototype

int jidoshaGetDoubleProperty(JidoshaHandle* handle, const char* name, double* value);

Description

Reads the value of a double variable from the library configuration.

Parameters

handle: pointer to a JidoshaHandle .

name : string containing the name of the property to be read.

value : pointer to a double variable where the value of the property will be stored.

Return

JIDOSHA_SUCCESS if the value is read, JIDOSHA_ERROR_INVALID_PROPERTY if the property does not exist or is not of type double.

jidoshaSetCharProperty

Function prototype

int jidoshaSetCharProperty(JidoshaHandle* handle, const char* name, char value);

Description

Changes the value of a char variable from the library configuration.

Parameters

handle: pointer to a JidoshaHandle .

name : string containing the name of the property to be set.

value : value that shall be set to the property.

Return

JIDOSHA_SUCCESS if the value is changed, JIDOSHA_ERROR_INVALID_PROPERTY if the property does not exist or is not of type char.

jidoshaGetCharProperty

Function prototype

int jidoshaGetCharProperty(JidoshaHandle* handle, const char* name, char* value);

Description

Reads the value of a char variable from the library configuration.

Parameters

8. JIDOSHA user APIs JidoshaLight - User Manual - v3.19.0

© Pumatronix 81/99

handle: pointer to a JidoshaHandle .

name : string containing the name of the property to be read.

value : pointer to a char variable where the value of the property will be stored.

Return

JIDOSHA_SUCCESS if the value is read, JIDOSHA_ERROR_INVALID_PROPERTY if the property does not exist or is not of type char.

jidoshaFindFirst

Function prototype

int jidoshaFindFirst(JidoshaHandle* handle, JidoshaImage* image, ResultList* list);

Description

Recognizes the license plate and stores it in a Reconhecimento object inside the Orst node of the ResultList . The image should be loaded with
jidoshaLoadImage or jidoshaLoadImageFromMemory Orst. If no plate is found, or if the hardkey is unauthorized or could not be found, the
Reconhecimento object will contain an empty string as the plate.

This function should be called only with an empty ResultList object.

Parameters

handle: pointer to a JidoshaHandle that has the library configuration.

image : pointer to a JidoshaImage that has the image to be processed.

list : pointer to a ResultList where the result will be stored.

Return

JIDOSHA_SUCCESS if the function is able to process the image, otherwise it returns another jidoshaError .

jidoshaFindNext

Function prototype

int jidoshaFindNext(JidoshaHandle* handle, JidoshaImage* image, ResultList* list);

Description

The purpose of this function is to allow the user to recognize multiple license plates in a single image. Each call will recognize one license plate and
store it in a Reconhecimento object inside the last node of the ResultList . The image should be loaded with jidoshaLoadImage or
jidoshaLoadImageFromMemory Orst. If no plate is found, or if the hardkey is unauthorized or could not be found, the Reconhecimento object will
contain an empty string as the plate.

This function should be called only with a ResultList already processed with either jidoshaFindFirst or jidoshaFindNext .

Parameters

handle: pointer to a JidoshaHandle that has the library configuration.

image : pointer to a JidoshaImage that has the image to be processed.

list : pointer to a ResultList where the result will be stored.

Return

JIDOSHA_SUCCESS if the function is able to process the image, otherwise it returns another jidoshaError .

jidoshaLoadImage

Function prototype

int jidoshaLoadImage(const char* filename, JidoshaImage** img);

8. JIDOSHA user APIs JidoshaLight - User Manual - v3.19.0

© Pumatronix 82/99

Description

Loads an image from a file and stores a reference as a JidoshaImage .

The image file should be in BMP, JPEG, or PNG format.

Parameters

filename : path to the image file.

img : pointer to the JidoshaImage where the loaded image will be stored.

Return

JIDOSHA_SUCCESS if the image is loaded correctly, JIDOSHA_ERROR_FILE_NOT_FOUND if the Ole is not found or does not exist,
JIDOSHA_ERROR_INVALID_IMAGE or JIDOSHA_ERROR_INVALID_IMAGE_TYPE if there is any problem while loading the image.

jidoshaLoadImageFromMemory

Function prototype

int jidoshaLoadImageFromMemory(const unsigned char* buf, int n, int type, int width, int height, JidoshaImage** img);

Description

Loads an image from an array of bytes and stores a reference as a JidoshaImage .

The image must be in a structured format (BMP, JPEG, PNG, etc.) or RAW format (8-bit grayscale, RGB, or BGR).

Parameters

buf : byte array containing the image.

n: size of the byte array.

type : type of the image

Structured type=0, GRAY8=1, RGB=2, BGR=3

width : image width, ignored if type==0

height: image height, ignored if type==0

img : pointer-to-pointer to a JidoshaImage where the loaded image will be stored.

Return

JIDOSHA_SUCCESS if the image is correctly loaded, JIDOSHA_ERROR_FILE_NOT_FOUND if the Ole is not found or does not exist,
JIDOSHA_ERROR_INVALID_IMAGE or JIDOSHA_ERROR_INVALID_IMAGE_TYPE if there is any problem while loading the image.

jidoshaFreeImage

Function prototype

int jidoshaFreeImage(JidoshaImage** img);

Description

Frees the memory allocated for the image.

Parameters

img : pointer-to-pointer to a JidoshaImage that will be freed.

Return

JIDOSHA_SUCCESS.

jidoshaBuildInfo

Function prototype

8. JIDOSHA user APIs JidoshaLight - User Manual - v3.19.0

© Pumatronix 83/99

const char* jidoshaBuildInfo();

Description

Check the library build info. Useful to check if the version being used is the right one.

Parameters

None.

Return

Constant string made by 12 or 13 characters that represents the BuildInfo, plus an end of string (\0).

jidoshaNumThreads

Function prototype

int jidoshaNumThreads();

Description

Check the number of authorized threads in the hardkey.

Parameters

None.

Return

Integer that represents the number of threads that are authorized to execute the library's license plate recognition functions simultaneously. Returns 1
if no hardkey is found.

8.1.2.3. API 2 - Configuration
This section details the configuration parameters for API 2. It applies to the C, Java, .NET, Delphi, and Python APIs.

Parameter tipoPlaca

Use to restrict the type of vehicle license plate to be recognized. It is used mainly to reduce processing time. In particular, when
tipoPlaca=JIDOSHA_TIPO_PLACA_CARRO , a faster license plate localization method may be used by the library.

Name: tipoPlaca

Type: int

Default value: JIDOSHA_TIPO_PLACA_AMBOS

Other values:

JIDOSHA_TIPO_PLACA_CARRO == 1
JIDOSHA_TIPO_PLACA_MOTO == 2
JIDOSHA_TIPO_PLACA_AMBOS == 3

Parameter timeout

When timeout milliseconds have elapsed since the start of license plate recognition call, processing will be interrupted and the best license plate
found so far will be returned. If timeout is zero, there is no timeout. A timeout different than zero is recommended when the application requires that
images are processed quickly (low latency) or when the CPU load is too high.

Name: timeout

Type: int

Default value: 0

Parameter minNumChars

Indicates the minimum number of characters that the license plate should have. If the library version in use multiple plate syntaxes enabled (for

8. JIDOSHA user APIs JidoshaLight - User Manual - v3.19.0

© Pumatronix 84/99

instance, plates from multiple countries), this parameter is ignored, and numAllowedBadChars should be used instead.

Name: minNumChars

Type: int

Default value: 7

Parameter numAllowedBadChars

Indicates the maximum number of missing characters that a license plate can have. This parameter is used when one whishes that partially recognized
license plates are returned.

Name: numAllowedBadChars

Type: int

Default value: 0

Parameter maxNumChars

Indicates the maximum number of characters that a license plate can have. This parameter is ignored.

Name: maxNumChars

Type: int

Default value: 7

Parameter minCharWidth

Minimum width, in pixels, that a license plate character can have.

Name: minCharWidth

Type: int

Default value: 1

Parameter avgCharWidth

Average expected character width, in pixels. This parameter is obsolete and no longer used.

Name: avgCharWidth

Type: int

Default value: 1

Parameter maxCharWidth

Maximum width, in pixels, that a license plate character can have.

Name: maxCharWidth

Type: int

Default value: 7

Parameter minCharHeight

Minimum height, in pixels, that a license plate character can have.

Name: minCharHeight

Type: int

8. JIDOSHA user APIs JidoshaLight - User Manual - v3.19.0

© Pumatronix 85/99

Default value: 9

Parameter avgCharHeight

Average expected character height, in pixels. This parameter can be used when plates are very large. When avgCharHeight > 30, the image will be
downscaled internally before being processed. The minimum and maximum size limits are adjusted accordingly.

Name: avgCharHeight

Type: int

Default value: 20

Parameter maxCharHeight

Maximum character height, in pixels.

Name: maxCharHeight

Type: int

Default value: 60

Parameter ocrModel

DeOnes the Optical Character Recognition (OCR) model to be used. This parameter exists to easily enable switching the OCR to that of older versions of
the library, without needing to recompile the user application or switching the library. Do not use values different than the default, except when
recommended by Pumatronix technical support.

Name: ocrModel

Type: int

Default value: 1

Parameter checkSyntax

When checkSyntax=1 the libarry performs an additional processing step to check that the recognized characters have the expected syntax (letter or
number), which reduces the false positive rate (texts that are not plates being recognized as such).

Note: even when checkSyntax=0 , the library will never return a recognition result with syntax different from the deOned one. For example, if the syntax
is LLLNNNN , the returned plate will always have 3 letters followed by 4 numbers. However, a non-plate text, such as "ESCOLAR", may be confused with a
legitimate plate, which would result in a recognition like ESC0148 . The syntax of that result is correct, though it does not belong to a license plate. Using
checkSyntax=1 helps to filter false recognitions like that.

Name: checkSyntax

Type: int

Default value: 1

Parameter minPlateAngle

Minimum allowed horizontal plate angle, in degrees. For more details, see the section on image perspective configuration.

Name: minPlateAngle

Type: double

Default value: -30.0

Parameter maxPlateAngle

Maximum allowed horizontal plate angle, in degrees. For more details, see the section on image perspective configuration.

8. JIDOSHA user APIs JidoshaLight - User Manual - v3.19.0

© Pumatronix 86/99

Name: maxPlateAngle

Type: double

Default value: 30.0

Parameter minProbPerCharacter

Minimum probability (reliability) for each recognized character. This parameter is extremely important for the correct functioning of JIDOSHA, and
changing the default configuration is not recommended. However, in specific cases it may be appropriate to fine-tune it.

If minProbPerCharacter is lower than the default value, the number of non-recognized plates will decrease, but the number of incorrectly recognized
plates will increase as well.

If minProbPerCharacter is higher than the default value, the number of non-recognized plates may increase, but the number of errors will decrease.

Name: minProbPerCharacter

Type: double

Default value: 0.8

Parameter excellentProb

The purpose of this parameter is to reduce the average processing time. If all recognized characters have probability less than or equal to
excellentProb , the recognition result will be considered excellent and returned immediately to the caller, without additional processing. Otherwise,
processing will continue until one of the following conditions is met: an excellent recognition is found; the call has timeouted; or there are no mode
processing steps to perform.

Higher values of excellentProb result in higher recognition rates and lower error rates (character confusion), but with longer processing times.

Lower values of excellentProb result in lower recognition rates and higher error rates (character confusion), but with shorter processing times.

Name: excellentProb

Type: double

Default value: 0.95

Parameter lowProbabilityChar

Substitution character used when a license plate character is recognized with probability less than minProbPerCharacter. It will have effect only if
parameter minNumChars is less than maxNumChars.

For example, if lowProbabilityChar='-' and minNumChars=6 , the plate "ABC1234" will be returned as "A-C1234" if the probability of the second
character is less than minProbPerCharacter.

Name: lowProbabilityChar

Type: char

Default value: '*'

Parameter country

ISO 3166-1 code representing the country to be processed.

For example, if code 32 were used, the plates from Argentina would be processed. Note that the processing availability of a particular country is
dependent on the acquired license.

Name: country

Type: int

Default value: 76

8.1.2.4. API 2 - Image perspective configuration

8. JIDOSHA user APIs JidoshaLight - User Manual - v3.19.0

© Pumatronix 87/99

In general, we recommend that the camera installation for license plate recognition is such that the plates are aligned to the horizontal and vertical
image axes. However, in some situations that is not possible, so the plates end up at an angle relative to the image axes, which may be harmful to
recognition. In those cases it is possible to inform the plate perspective to the library. The library will then perform perspective correction, in order to
maximize the recognition rate.

In the case of an equipment with several cameras, one API 2 handle per camera must be created (through the jidoshaInit function) and the
perspective parameters configured individually for each handle.

The avgPlateAngle , avgPlateSlant , and adjustPerspective parameters are used to inform the plate perspective in the image (horizontal and
vertical inclinations) and correct it. The horizontal inclination (avgPlateAngle) and the vertical inclination (avgPlateSlant) must be measured with
typical images for each camera installation.

Besides the above manual perspective correction, the library also has algorithms for automatic perspective correction. See parameters autoSlope and
autoSlant for more details.

How to measure avgPlateAngle and avgPlateSlant

Parameter avgPlateAngle

Expected horizontal inclination angle of the license plate, in degrees. It is used to perform perspective correction in the image. It will only be enabled if
adjustPerspective is different than zero. The angle must be measured according to the convention in the image shown above.

Name: avgPlateAngle

Type: double

Default value: 0.0

Parameter avgPlateSlant

Expected vertical inclination angle of the license plate, in degrees. It is used to perform perspective correction in the image. It will only be enabled if
adjustPerspective is different than zero. The angle must be measured according to the convention in the image shown above.

Name: avgPlateSlant

Type: double

Default value: 0.0

8. JIDOSHA user APIs JidoshaLight - User Manual - v3.19.0

© Pumatronix 88/99

Parameter adjustPerspective

adjustPerspective=1 enables manual perspective correction configured by avgPlateAngle and avgPlateSlant .

adjustPerspective=0 disables manual perspective correction (avgPlateAngle and avgPlateSlant are ignored).

Name: adjustPerspective

Type: int

Default value: 0

Parameter autoSlope

autoSlope=1 enables automatic correction for the license plate's horizontal angle. If used with manual perspective correction (avgPlateAngle when
adjustPerspective=1), the manual correction will be applied before the automatic correction algorithm.

autoSlope=0 disables automatic horizontal angle correction.

Name: autoSlope

Type: int

Default value: 1

Parameter autoSlant

autoSlant=1 enables automatic correction for the license plate's vertical angle. If used with manual perspective correction (avgPlateSlant when
adjustPerspective=1), the manual correction will be applied before the automatic correction algorithm.

autoSlant=0 disables automatic vertical angle correction.

Name: autoSlant

Type: int

Default value: 1

8. JIDOSHA user APIs JidoshaLight - User Manual - v3.19.0

© Pumatronix 89/99

8.2.1. JIDOSHA C# / VB.NET API
The library's .NET API contains three overloaded functions, which make it easy to apply license plate recognition to an image from any of three sources:
an array of bytes containing a coded image (JPG, BMP etc.), and object of type Image , or a Olepath. All of these functions need an object of type
JidoshaConfig , which is used to configure the behavior of the library.

.NET API 2 has the same functions from C/C++ API 2.

8.2.2. API 1

8.2.2.1. Methods

reconhecePlaca 1

Function prototype

Reconhecimento reconhecePlaca(byte[] array, JidoshaConfig config)

Description

Returns a Reconhecimento object which represents the result of the license plate recognition process. The image (JPG, BMP etc.) should be passed as
a byte array.

Return

Reconhecimento object containing the license plate text string, an array of doubles containing the reliability of each character, the coordinates of the
text rectangle, the text color (dark or light), and whether the license plate is that of a motorcycle. If no plate is found, or if the hardkey is unauthorized or
could not be found, the Reconhecimento object will contain an empty string as the plate.

reconhecePlaca 2

Function prototype

Reconhecimento reconhecePlaca(Image image, JidoshaConfig config)

Description

Returns a Reconhecimento object which represents the result of the license plate recognition process. The image should be passed as an Image
object.

Return

Reconhecimento object containing the license plate text string, an array of doubles containing the reliability of each character, the coordinates of the
text rectangle, the text color (dark or light), and whether the license plate is that of a motorcycle. If no plate is found, or if the hardkey is unauthorized or
could not be found, the Reconhecimento object will contain an empty string as the plate.

reconhecePlaca 3

Function prototype

Reconhecimento reconhecePlaca(string filename, JidoshaConfig config)

Description

Returns a Reconhecimento object which represents the result of the license plate recognition process. The image should be passed as a Olepath
pointing to the image file.

Return

Reconhecimento object containing the license plate text string, an array of doubles containing the reliability of each character, the coordinates of the
text rectangle, the text color (dark or light), and whether the license plate is that of a motorcycle. If no plate is found, or if the hardkey is unauthorized or
could not be found, the Reconhecimento object will contain an empty string as the plate.

getVersionString

8. JIDOSHA user APIs JidoshaLight - User Manual - v3.19.0

© Pumatronix 90/99

Function prototype

String getVersionString()

Description

Used to get the library version, in the major.minor.release format.

Return

Returns a string formatted with the library version.

getHardkeySerial

Function prototype

int getHardkeySerial()

Description

Used to get the hardkey serial number.

Return

Returns the hardkey serial number.

getHardkeyState

Function prototype

int getHardkeyState()

Description

Used to get the hardkey state. If the return value is equal to 0 , the hardkey is unauhorized; if the return value is equal to 1 , the hardkey is authorized.

Return

Returns the hardkey state, according to the description above.

8.2.2. JIDOSHA C# / VB.NET API Examples

C# Example

using System;
 using System.Collections.Generic;
 using System.Linq;
 using System.Text;
 using System.Drawing;

 using JidoshaNET;

 namespace JidoshaSample
 {
 class JidoshaSample
 {
 static void Main(string[] args)
 {
 Console.WriteLine("Jidosha build {0}", Jidosha.jidoshaBuildInfo());
 Console.WriteLine("Hardkey serial {0}", Jidosha.getHardKeySerial());
 Console.WriteLine("Hardkey {0}", Jidosha.getHardKeyState() == 1 ? "autorizado" : "não autorizado");

 if (args.Length < 1)
 {
 Console.WriteLine("uso: jidoshaNETSample imagem");
 Console.WriteLine("Aperte Enter para sair");
 Console.ReadLine();
 return;
 }

 // Carrega a imagem
 string filename = args[0];
 Image image = Image.FromFile(filename);
 System.IO.MemoryStream stream = new System.IO.MemoryStream();
 image.Save(stream, image.RawFormat);
 byte[] array = stream.ToArray();
 stream.Close();
 stream.Dispose();

 // Sample API1
 JidoshaConfig cfg = new JidoshaConfig();
 cfg.timeout = 0;

8. JIDOSHA user APIs JidoshaLight - User Manual - v3.19.0

© Pumatronix 91/99

 cfg.tipoPlaca = TipoPlaca.AMBOS;
 Reconhecimento r = Jidosha.reconhecePlaca(filename, cfg);
 System.Console.WriteLine("reconhecePlaca: {0}", r.placa);
 r = Jidosha.reconhecePlaca(array, cfg);
 System.Console.WriteLine("reconhecePlacaFromMemory: {0}", r.placa);

 // Sample API2

 // Inicializa
 IntPtr JidoshaHandle = Jidosha.jidoshaInit();

 // SetProperty
 Jidosha.jidoshaSetIntProperty(JidoshaHandle, "avgCharHeight", 20);
 Jidosha.jidoshaSetIntProperty(JidoshaHandle, "minNumChars", 6);
 Jidosha.jidoshaSetDoubleProperty(JidoshaHandle, "minProbPerCharacter", 0.7);
 Jidosha.jidoshaSetCharProperty(JidoshaHandle, "lowProbabilityChar", '_');

 // GetProperty
 int maxCharHeight = 0;
 double minProb = 0;
 maxCharHeight = Jidosha.jidoshaGetIntProperty(JidoshaHandle, "avgCharHeight");
 minProb = Jidosha.jidoshaGetDoubleProperty(JidoshaHandle, "minProbPerCharacter");

 Console.WriteLine("Altura media: {0}", maxCharHeight);
 Console.WriteLine("Probabilidade minima: {0}", minProb);

 // Carrega uma imagem
 IntPtr JidoshaImg = Jidosha.jidoshaLoadImage(array, 0, 0, 0);

 // Reconhece placa
 ResultList resultList = new ResultList();
 Jidosha.jidoshaFindFirst(JidoshaHandle, JidoshaImg, ref resultList);
 while (resultList.reconhecimento[resultList.reconhecimento.Count - 1].placa != "")
 {
 Jidosha.jidoshaFindNext(JidoshaHandle, JidoshaImg, ref resultList);
 }

 // Imprime o resultado
 foreach (Reconhecimento rec in resultList.reconhecimento)
 {
 Console.WriteLine("Placa: {0}", rec.placa);
 Console.Write("Probs:");
 foreach (double d in rec.probabilities)
 Console.Write(" {0},", d);
 Console.WriteLine("");
 }

 // Apaga a lista de reconhecimentos
 Jidosha.jidoshaFreeResultList(resultList);

 // Libera a imagem
 Jidosha.jidoshaFreeImage(JidoshaImg);

 // Libera o handle do jidosha
 Jidosha.jidoshaDestroy(JidoshaHandle);

 Console.WriteLine("Aperte Enter para sair");
 Console.ReadLine();
 }
 }
 }

VB.NET Example

Imports JidoshaNET

 Module Module1

 Sub Main()
 Dim args() As String = Environment.GetCommandLineArgs()
 Dim filename As String = args(1)
 Dim config As JidoshaConfig = New JidoshaConfig()
 config.tipoPlaca = TipoPlaca.AMBOS
 config.timeout = 1000
 Dim rec As Reconhecimento = Jidosha.reconhecePlaca(filename, config)
 Console.WriteLine("placa: " + rec.placa)
 End Sub

 End Module

8. JIDOSHA user APIs JidoshaLight - User Manual - v3.19.0

© Pumatronix 92/99

8.3.1. JIDOSHA Delphi API

8.3.2. API 1

8.3.2.1. Methods

reconhecePlaca

Function prototype

function reconhecePlaca(filename: String; config: JidoshaConfig) : Reconhecimento;

Description

Returns a Reconhecimento object which represents the result of the license plate recognition process. The image should be passed as a Olepath
pointing to the image file.

Return

Reconhecimento object containing the license plate text string, an array of doubles containing the reliability of each character, the coordinates of the
text rectangle, the text color (dark or light), and whether the license plate is that of a motorcycle. If no plate is found, or if the hardkey is unauthorized or
could not be found, the Reconhecimento object will contain an empty string as the plate.

reconhecePlacaFromMemory

Function prototype

function reconhecePlacaFromMemory(byteArray: array of byte; config: JidoshaConfig) : Reconhecimento;

Description

Returns a Reconhecimento object which represents the result of the license plate recognition process. The image (JPG, BMP etc.) should be passed as
a byte array.

Return

Reconhecimento object containing the license plate text string, an array of doubles containing the reliability of each character, the coordinates of the
text rectangle, the text color (dark or light), and whether the license plate is that of a motorcycle. If no plate is found, or if the hardkey is unauthorized or
could not be found, the Reconhecimento object will contain an empty string as the plate.

8.3.3. JIDOSHA Delphi API Example

Note: This example is for Delphi 2007. In more recent Delphi versions, it may be necessary to convert the filepath string to AnsiString before passing it
to the C library. It may also be necesssary to convert the license plate string from AnsiString to Unicode .

program JidoshaDelphiSample;

 {$APPTYPE CONSOLE}

 uses
 SysUtils,
 jidoshaDelphi in 'jidoshaDelphi.pas';

 var
 filename: String;
 rec: Reconhecimento;
 config: JidoshaConfig;
 begin
 if ParamCount < 1
 then begin
 Writeln('uso: jidoshaDelphiSample.exe imagem.jpg');
 Exit;
 end;

 filename := ParamStr(1);
 Writeln(filename);

 config.tipoPlaca := JIDOSHA_TIPO_PLACA_AMBOS;
 config.timeout := 1000;
 rec := reconhecePlaca(filename, config);
 Writeln('placa: ', rec.placa);
 end.

8. JIDOSHA user APIs JidoshaLight - User Manual - v3.19.0

© Pumatronix 93/99

8.4.1. JIDOSHA Java API

8.4.2. API 1

8.4.2.1. Methods

reconhecePlaca

Function prototype

public static native Reconhecimento reconhecePlaca(String filename, JidoshaConfig config);

Description

Returns a Reconhecimento object which represents the result of the license plate recognition process. The image should be passed as a Olepath
pointing to the image file.

Return

Reconhecimento object containing the license plate text string, an array of doubles containing the reliability of each character, the coordinates of the
text rectangle, the text color (dark or light), and whether the license plate is that of a motorcycle. If no plate is found, or if the hardkey is unauthorized or
could not be found, the Reconhecimento object will contain an empty string as the plate.

reconhecePlacaFromMemory

Function prototype

public static native Reconhecimento reconhecePlacaFromMemory(byte[] buf, JidoshaConfig config);

Description

Returns a Reconhecimento object which represents the result of the license plate recognition process. The image (JPG, BMP etc.) should be passed as
a byte array.

Return

Reconhecimento object containing the license plate text string, an array of doubles containing the reliability of each character, the coordinates of the
text rectangle, the text color (dark or light), and whether the license plate is that of a motorcycle. If no plate is found, or if the hardkey is unauthorized or
could not be found, the Reconhecimento object will contain an empty string as the plate.

8.4.3. JIDOSHA Java API Example

import br.com.gaussian.jidosha.Jidosha;
 import br.com.gaussian.jidosha.JidoshaConfig;
 import br.com.gaussian.jidosha.Reconhecimento;

 class JidoshaSample {
 public static void main(String args[]) throws java.io.IOException {
 JidoshaConfig config = new JidoshaConfig(JidoshaConfig.JIDOSHA_TIPO_PLACA_AMBOS, 0);
 for (int i=0; i < args.length; i++) {
 System.out.println(args[i]);
 Reconhecimento rec = Jidosha.reconhecePlaca(args[i], config);
 System.out.println("placa: " + rec.placa);
 }
 }
 }

8. JIDOSHA user APIs JidoshaLight - User Manual - v3.19.0

© Pumatronix 94/99

8.5.1. Special legacy API builds
For several reasons, JIDOSHA had several different build types for the same version number, which in general are not compatible with each other. The
build type can be veriOed with the function jidoshaBuildInfo . The buildInfo string has the following format: "hash_build", where "hash" is the commit
hash, and "build" is a string denoting the build type.

Until v3.4.0 JidoshaLight is compatible only with JIDOSHA's std build, which is the standard build type. Since v3.5.0 JidoshaLight is compatible also
with the charpos build ("character positions"), as long as a certain registry key or environment variable exists, as detailed below. The only difference
between builds std and charpos consists in four additional Oelds in the Reconhecimento struct in header jidoshaCore.h , which contain the license
plate character coordinates when recognition is successful. Due to this API difference, builds std and charpos are incompatible with each other (an
executable compiled for one of these builds cannot be used with a different build).

Note: The compatibility mode for charpos build is only supported in C language API.

For reference, the structs of builds std and charpos are listed below.

std build:

 typedef struct Reconhecimento
 {
 char placa[7+1];
 double probabilities[7];
 int xText;
 int yText;
 int widthText;
 int heightText;
 int textColor;
 int isMotorcycle;
 } Reconhecimento;

charpos build:

 typedef struct Reconhecimento
 {
 char placa[7+1];
 double probabilities[7];
 int xText;
 int yText;
 int widthText;
 int heightText;
 int xChar[7];
 int yChar[7];
 int widthChar[7];
 int heightChar[7];
 int textColor;
 int isMotorcycle;
 } Reconhecimento;

To enable the charpos build compatibility mode in Windows, it is necessary to create a key in the Windows registry, in HKLM\SOFTWARE\PUMATRONIX ,
named JL_LEGACY_API_TYPE , with type REG_SZ and value charpos . Any other value will make JidoshaLight return to its standard mode (compatibility
with build std). Instead of the registry, one can also use an environment variable, with name JL_LEGACY_API_TYPE and value charpos .

The registry key can be created with the following prompt command (Administrator credentials needed):

 REG ADD HKLM\SOFTWARE\PUMATRONIX /v JL_LEGACY_API_TYPE /t REG_SZ /d charpos /f

To disable charpos build compatibility mode, change the value of the variable to an empty string, or simply delete the key:

 REG DELETE HKLM\SOFTWARE\PUMATRONIX /v JL_LEGACY_API_TYPE

To activate the charpos build compatibility mode in Linux, it is necesssary to create an environment variable, with name JL_LEGACY_API_TYPE and
value charpos . Any other value will make JidoshaLight return to its standard mode (compatibility with build std)

Notes:

If the charpos build compatibility mode is enabled (JL_LEGACY_API_TYPE=charpos), but by mistake the user code is using struct Reconhecimento
from the std build, invalid memory access or even silent data corruption may occur.
We recommend migrating legacy code to JidoshaLight's API as soon as possible.

8. JIDOSHA user APIs JidoshaLight - User Manual - v3.19.0

© Pumatronix 95/99

9. Known limitations
JidoshaLight has the following known limitations:

1. When the library is loaded dynamically (LoadLibrary in Windows, dlopen in Linux), the library must not be unloaded (FreeLibrary and dlclose ,
respectively).

2. In Linux, the library's process must not be forked.

3. When JidoshaLight is used concurrently and in the same process as Pumatronix's container or rail OCR libraries, JidoshaLight must be loaded last.
This limitation will be removed in a future version of the libraries.

9. Known limitations JidoshaLight - User Manual - v3.19.0

© Pumatronix 96/99

API Index

C/C++
enum JidoshaLightCountryCode
enum JidoshaLightMode
enum JidoshaLightRawImgFmt
enum JidoshaLightVehicleType
getHardkeyRemainingTime
getHardkeySerial
getHardkeySerial
getHardkeyState
getHardkeyState
getVersion
getVersionString
jidoshaBuildInfo
jidoshaDestroy
jidoshaFindFirst
jidoshaFindNext
jidoshaFreeImage
jidoshaFreeResultList
jidoshaGetCharProperty
jidoshaGetDoubleProperty
jidoshaGetIntProperty
jidoshaInit
jidoshaLight_ANPR_createImage
jidoshaLight_ANPR_createList
jidoshaLight_ANPR_destroyImage
jidoshaLight_ANPR_destroyList
jidoshaLight_ANPR_duplicateList
jidoshaLight_ANPR_duplicateList
jidoshaLight_ANPR_fromFile
jidoshaLight_ANPR_fromImage
jidoshaLight_ANPR_fromLuma
jidoshaLight_ANPR_fromMemory
jidoshaLight_ANPR_fromRawImgFmt
jidoshaLight_ANPR_getListElement
jidoshaLight_ANPR_getListSize
jidoshaLight_ANPR_loadImageFromFile
jidoshaLight_ANPR_loadImageFromMemory
jidoshaLight_ANPR_loadImageFromRawImgFmt
jidoshaLight_ANPR_multi_fromImage
jidoshaLight_ANPR_setImageLazyDecode
jidoshaLight_getBuildFlags
jidoshaLight_getBuildSHA1
jidoshaLight_getLicenseInfo
jidoshaLight_getReturnCodeString
jidoshaLight_getVersion
jidoshaLight_isRemoteApi
jidoshaLight_setRemoteSyncServerIp
jidoshaLightServer_create
jidoshaLightServer_destroy
jidoshaLoadImage
jidoshaLoadImageFromMemory
jidoshaNumThreads
jidoshaSetCharProperty
jidoshaSetDoubleProperty
jidoshaSetIntProperty
jl_async_ANPR_fromFile
jl_async_ANPR_fromImage

API Index JidoshaLight - User Manual - v3.19.0

© Pumatronix 97/99

jl_async_ANPR_fromLuma
jl_async_ANPR_fromMemory
jl_async_ANPR_fromRawImgFmt
jl_async_ANPR_multi_fromImage
jl_async_connect
jl_async_connect
jl_async_create_handle
jl_async_destroy_handle
jl_async_get_localqueue_size
lePlaca
lePlacaFromMemory
reconhecePlaca
reconhecePlaca
reconhecePlaca 1
reconhecePlaca 2
reconhecePlaca 3
reconhecePlacaFromMemory
reconhecePlacaFromMemory
struct JidoshaConfig
struct JidoshaLightClientConfig
struct JidoshaLightConfig
struct JidoshaLightHandle
struct JidoshaLightImage
struct JidoshaLightLicenseInfo
struct JidoshaLightRecognition
struct JidoshaLightRecognitionInfo
struct JidoshaLightRecognitionList
struct JidoshaLightServer
struct JidoshaLightServerConfig
struct JidoshaLightServerInfo
struct Reconhecimento
struct ResultList
typedef void JCallback
typedef void JidoshaHandle
typedef void JidoshaImage

JAVA
class JidoshaLight.Config
class JidoshaLight.LicenseInfo
class JidoshaLight.Recognition
class JidoshaLight.Version
class JidoshaLightImage
class JidoshaLightRemote.Config
class JidoshaLightRemote.ServerInfo
class JidoshaLightServer.Config
class Mjpeg.Config
interface JidoshaLightRemote.CallBacks
interface JidoshaLightRemote.CallBacks
interface Mjpeg.Callbacks
JidoshaLight.ANPR_fromBitmap [ANDROID]
JidoshaLight.ANPR_fromFile [LINUX]
JidoshaLight.ANPR_fromImage [LINUX and ANDROID]
JidoshaLight.ANPR_fromLuma [LINUX]
JidoshaLight.ANPR_fromMemory [LINUX]
JidoshaLight.ANPR_fromUri [ANDROID]
JidoshaLight.ANPR_multi_fromImage [LINUX and ANDROID]
JidoshaLight.getAndroidFingerprint [ANDROID]
JidoshaLight.getBuildFlags
JidoshaLight.getBuildSHA1
JidoshaLight.getLicenseFromServer [ANDROID]
JidoshaLight.getLicenseInfo
JidoshaLight.getVersion
JidoshaLight.setLicenseFromData [ANDROID]

API Index JidoshaLight - User Manual - v3.19.0

© Pumatronix 98/99

JidoshaLightRemote.ANPR_fromMemory
JidoshaLightRemote.ANPR_fromRawImgFmt
JidoshaLightRemote.connect
JidoshaLightRemote.connect_info
JidoshaLightRemote.create_handle
JidoshaLightRemote.destroy_handle
JidoshaLightRemote.get_localqueue_size
JidoshaLightRemote.getBuildFlags
JidoshaLightRemote.getBuildSHA1
JidoshaLightRemote.getVersion
JidoshaLightServer.create_handle
JidoshaLightServer.destroy_handle
JidoshaLightServer.getBuildFlags
JidoshaLightServer.getBuildSHA1
JidoshaLightServer.getVersion
Mjpeg.connect
Mjpeg.create_handle
Mjpeg.destroy_handle
Mjpeg.get_frame

API Index JidoshaLight - User Manual - v3.19.0

© Pumatronix 99/99

	JidoshaLight
	Summary
	Change history
	1. Overview
	1.1. General Conditions
	1.2. Software license

	2. Introduction
	2.1. Objective
	2.2. Supported Plates
	2.3. JidoshaLight SDK Structure
	2.3.1. Supported APIs

	3. JidoshaLight Linux
	3.1. Use conditions
	3.2. Software architecture
	3.3. Restrictions
	3.4. Installation
	3.4.1. Hardkey permissions configuration
	3.4.2. Environment variables configuration
	3.4.2.1 Log and audit system
	3.4.3. Preferences file configuration

	3.5. Sample applications

	4. JidoshaLight Windows
	4.1. Use conditions
	4.3. Installation
	4.4. Environment variables configuration
	4.4.1 Log and audit system

	4.5 Preferences file configuration
	4.6. Sample applications

	5. JidoshaLight Linux/FPGA
	5.1. Use conditions
	5.2. Software architecture
	5.3. Restrictions
	5.4. Installation
	5.4.1. License configuration
	5.4.2. Environment variables configuration
	5.4.3. Linux kernel configuration

	5.5. Sample applications

	6. JidoshaLight Android™
	6.1. Use conditions
	6.2. Software architecture
	6.3. Restrictions
	6.4. Installation
	6.4.1 Licensing
	6.4.2 Permissions

	6.5. Sample application
	6.5.1 Package br.gaussian.io
	6.5.2 Package br.gaussian.jidoshalight
	6.5.3 Package br.gaussian.jidoshalight.camera
	6.5.4 Package br.gaussian.jidoshalight.sample
	6.5.4.1 Common
	6.5.4.2 Activities
	6.5.4.3 Fragments

	7. User APIs
	7.1. JidoshaLight C/C++ API
	7.1.1. JidoshaLight C/C++ API (Local)
	jidosha_light_api_common.h
	jidosha_light_api.h
	7.1.1.1. Types
	7.1.1.2. Methods
	Function return codes

	7.1.2. JidoshaLight C/C++ (Synchronous Remote)
	7.1.2.1. Methods

	7.1.3. JidoshaLight C/C++ API (Asynchronous Remote)
	7.1.3.1. Types
	7.1.3.2. Methods

	7.1.4. JidoshaLight C/C++ API (Server)
	7.1.4.1. Types
	7.1.4.2. Methods

	7.2. JidoshaLight Java API
	7.2.1. JidoshaLight Java API (Local)
	7.2.1.1. Types
	7.2.1.2. Methods
	7.2.1.3. Function return codes

	7.2.2. JidoshaLight Java API (Asynchronous Remote)
	7.2.2.1. Types
	7.2.2.2. Methods

	7.2.3. JidoshaLight Java API (Server)
	7.2.3.1. Types
	7.2.3.2. Methods

	7.2.4. JidoshaLight Java API (IO/Mjpeg)
	7.2.4.1. Types
	7.2.4.2. Methods

	7.3. Migration Guide - Jidosha C/C++ API 1

	8. JIDOSHA user APIs
	jidoshaCore.h
	8.1.1. JIDOSHA C/C++ API 1
	8.1.1.1. Types
	struct JidoshaConfig
	Description
	Members
	Members

	8.1.1.2. Methods
	lePlaca
	Function prototype
	Description
	Parameters
	Return
	lePlacaFromMemory
	Function prototype
	Description
	Parameters
	Return
	getVersion
	Function prototype
	Description
	Parameters
	Return
	getHardkeySerial
	Function prototype
	Description
	Parameters
	Return
	getHardkeyState
	Function prototype
	Description
	Parameters
	Return
	getHardkeyRemainingTime
	Function prototype
	Description
	Parameters
	Return

	8.1.2. JIDOSHA C/C++ API 2
	8.1.2.1. Types
	struct ResultList
	Description
	Members

	8.1.2.2. Methods
	jidoshaFreeResultList
	Function prototype
	Description
	Parameters
	Return
	jidoshaInit
	Function prototype
	Description
	Parameters
	Return
	jidoshaDestroy
	Function prototype
	Description
	Parameters
	Return
	jidoshaSetIntProperty
	Function prototype
	Description
	Parameters
	Return
	jidoshaGetIntProperty
	Function prototype
	Description
	Parameters
	Return
	jidoshaSetDoubleProperty
	Function prototype
	Description
	Parameters
	Return
	jidoshaGetDoubleProperty
	Function prototype
	Description
	Parameters
	Return
	jidoshaSetCharProperty
	Function prototype
	Description
	Parameters
	Return
	jidoshaGetCharProperty
	Function prototype
	Description
	Parameters
	Return
	jidoshaFindFirst
	Function prototype
	Description
	Parameters
	Return
	jidoshaFindNext
	Function prototype
	Description
	Parameters
	Return
	jidoshaLoadImage
	Function prototype
	Description
	Parameters
	Return
	jidoshaLoadImageFromMemory
	Function prototype
	Description
	Parameters
	Return
	jidoshaFreeImage
	Function prototype
	Description
	Parameters
	Return
	jidoshaBuildInfo
	Function prototype
	Description
	Parameters
	Return
	jidoshaNumThreads
	Function prototype
	Description
	Parameters
	Return

	8.1.2.3. API 2 - Configuration
	Parameter tipoPlaca
	Parameter timeout
	Parameter minNumChars
	Parameter numAllowedBadChars
	Parameter maxNumChars
	Parameter minCharWidth
	Parameter avgCharWidth
	Parameter maxCharWidth
	Parameter minCharHeight
	Parameter avgCharHeight
	Parameter maxCharHeight
	Parameter ocrModel
	Parameter checkSyntax
	Parameter minPlateAngle
	Parameter maxPlateAngle
	Parameter minProbPerCharacter
	Parameter excellentProb
	Parameter lowProbabilityChar
	Parameter country

	8.1.2.4. API 2 - Image perspective configuration
	Parameter avgPlateAngle
	Parameter avgPlateSlant
	Parameter adjustPerspective
	Parameter autoSlope
	Parameter autoSlant

	8.2.1. JIDOSHA C# / VB.NET API
	8.2.2. API 1
	8.2.2.1. Methods
	reconhecePlaca 1
	Function prototype
	Description
	Return
	reconhecePlaca 2
	Function prototype
	Description
	Return
	reconhecePlaca 3
	Function prototype
	Description
	Return
	getVersionString
	Function prototype
	Description
	Return
	getHardkeySerial
	Function prototype
	Description
	Return
	getHardkeyState
	Function prototype
	Description
	Return

	8.2.2. JIDOSHA C# / VB.NET API Examples
	C# Example
	VB.NET Example

	8.3.1. JIDOSHA Delphi API
	8.3.2. API 1
	8.3.2.1. Methods
	reconhecePlaca
	Function prototype
	Description
	Return
	reconhecePlacaFromMemory
	Function prototype
	Description
	Return

	8.3.3. JIDOSHA Delphi API Example

	8.4.1. JIDOSHA Java API
	8.4.2. API 1
	8.4.2.1. Methods
	reconhecePlaca
	Function prototype
	Description
	Return
	reconhecePlacaFromMemory
	Function prototype
	Description
	Return

	8.4.3. JIDOSHA Java API Example

	8.5.1. Special legacy API builds

	9. Known limitations
	API Index
	C/C++
	enum JidoshaLightCountryCode
	enum JidoshaLightMode
	enum JidoshaLightRawImgFmt
	enum JidoshaLightVehicleType
	getHardkeyRemainingTime
	getHardkeySerial
	getHardkeySerial
	getHardkeyState
	getHardkeyState
	getVersion
	getVersionString
	jidoshaBuildInfo
	jidoshaDestroy
	jidoshaFindFirst
	jidoshaFindNext
	jidoshaFreeImage
	jidoshaFreeResultList
	jidoshaGetCharProperty
	jidoshaGetDoubleProperty
	jidoshaGetIntProperty
	jidoshaInit
	jidoshaLight_ANPR_createImage
	jidoshaLight_ANPR_createList
	jidoshaLight_ANPR_destroyImage
	jidoshaLight_ANPR_destroyList
	jidoshaLight_ANPR_duplicateList
	jidoshaLight_ANPR_duplicateList
	jidoshaLight_ANPR_fromFile
	jidoshaLight_ANPR_fromImage
	jidoshaLight_ANPR_fromLuma
	jidoshaLight_ANPR_fromMemory
	jidoshaLight_ANPR_fromRawImgFmt
	jidoshaLight_ANPR_getListElement
	jidoshaLight_ANPR_getListSize
	jidoshaLight_ANPR_loadImageFromFile
	jidoshaLight_ANPR_loadImageFromMemory
	jidoshaLight_ANPR_loadImageFromRawImgFmt
	jidoshaLight_ANPR_multi_fromImage
	jidoshaLight_ANPR_setImageLazyDecode
	jidoshaLight_getBuildFlags
	jidoshaLight_getBuildSHA1
	jidoshaLight_getLicenseInfo
	jidoshaLight_getReturnCodeString
	jidoshaLight_getVersion
	jidoshaLight_isRemoteApi
	jidoshaLight_setRemoteSyncServerIp
	jidoshaLightServer_create
	jidoshaLightServer_destroy
	jidoshaLoadImage
	jidoshaLoadImageFromMemory
	jidoshaNumThreads
	jidoshaSetCharProperty
	jidoshaSetDoubleProperty
	jidoshaSetIntProperty
	jl_async_ANPR_fromFile
	jl_async_ANPR_fromImage
	jl_async_ANPR_fromLuma
	jl_async_ANPR_fromMemory
	jl_async_ANPR_fromRawImgFmt
	jl_async_ANPR_multi_fromImage
	jl_async_connect
	jl_async_connect
	jl_async_create_handle
	jl_async_destroy_handle
	jl_async_get_localqueue_size
	lePlaca
	lePlacaFromMemory
	reconhecePlaca
	reconhecePlaca
	reconhecePlaca 1
	reconhecePlaca 2
	reconhecePlaca 3
	reconhecePlacaFromMemory
	reconhecePlacaFromMemory
	struct JidoshaConfig
	struct JidoshaLightClientConfig
	struct JidoshaLightConfig
	struct JidoshaLightHandle
	struct JidoshaLightImage
	struct JidoshaLightLicenseInfo
	struct JidoshaLightRecognition
	struct JidoshaLightRecognitionInfo
	struct JidoshaLightRecognitionList
	struct JidoshaLightServer
	struct JidoshaLightServerConfig
	struct JidoshaLightServerInfo
	struct Reconhecimento
	struct ResultList
	typedef void JCallback
	typedef void JidoshaHandle
	typedef void JidoshaImage

	JAVA
	class JidoshaLight.Config
	class JidoshaLight.LicenseInfo
	class JidoshaLight.Recognition
	class JidoshaLight.Version
	class JidoshaLightImage
	class JidoshaLightRemote.Config
	class JidoshaLightRemote.ServerInfo
	class JidoshaLightServer.Config
	class Mjpeg.Config
	interface JidoshaLightRemote.CallBacks
	interface JidoshaLightRemote.CallBacks
	interface Mjpeg.Callbacks
	JidoshaLight.ANPR_fromBitmap [ANDROID]
	JidoshaLight.ANPR_fromFile [LINUX]
	JidoshaLight.ANPR_fromImage [LINUX and ANDROID]
	JidoshaLight.ANPR_fromLuma [LINUX]
	JidoshaLight.ANPR_fromMemory [LINUX]
	JidoshaLight.ANPR_fromUri [ANDROID]
	JidoshaLight.ANPR_multi_fromImage [LINUX and ANDROID]
	JidoshaLight.getAndroidFingerprint [ANDROID]
	JidoshaLight.getBuildFlags
	JidoshaLight.getBuildSHA1
	JidoshaLight.getLicenseFromServer [ANDROID]
	JidoshaLight.getLicenseInfo
	JidoshaLight.getVersion
	JidoshaLight.setLicenseFromData [ANDROID]
	JidoshaLightRemote.ANPR_fromMemory
	JidoshaLightRemote.ANPR_fromRawImgFmt
	JidoshaLightRemote.connect
	JidoshaLightRemote.connect_info
	JidoshaLightRemote.create_handle
	JidoshaLightRemote.destroy_handle
	JidoshaLightRemote.get_localqueue_size
	JidoshaLightRemote.getBuildFlags
	JidoshaLightRemote.getBuildSHA1
	JidoshaLightRemote.getVersion
	JidoshaLightServer.create_handle
	JidoshaLightServer.destroy_handle
	JidoshaLightServer.getBuildFlags
	JidoshaLightServer.getBuildSHA1
	JidoshaLightServer.getVersion
	Mjpeg.connect
	Mjpeg.create_handle
	Mjpeg.destroy_handle
	Mjpeg.get_frame

