

R
ev

is
io

n
 1.

0
.1

Integration Manual
JidoshaLight

1

www.pumatronix.com

Pumatronix Equipamentos Eletrônicos Ltda.

Rua Bartolomeu Lourenço de Gusmão, 1970. Curitiba, Brazil

Copyright 2020 Pumatronix Equipamentos Eletrônicos Ltda.

All rights reserved.

Visit our website https://www.pumatronix.com/

Send feedback about this document in the suporte@pumatronix.com

Information contained in this document is subject to change without notice.

Pumatronix reserves the right to modify or improve this material without obligation to notify
you of the changes or improvements.

Pumatronix permits the downloading and printing of this document, provided that the
electronic or hard copy of this document contains the entire text. Any change to this content
is strictly prohibited.

Change History

Date Revision Updated content

12/22/2022 1.0 Initial Version

06/17/2024 1.0.1 Update for firmware versions 3.22.0 to 3.26.0

https://www.pumatronix.com/
file:///C:/_Manuais__Daiane/ITSCAM%204XX/Manual/suporte@pumatronix.com

R
ev

is
io

n
 1.

0
.1

Integration Manual
JidoshaLight

2

www.pumatronix.com

Overview

This document aims to guide the developer in the application of the JidoshaLight software library

responsible for the recognition and automatic license plate reading (LPR) from image analysis and applicable

in software compatible with the library. This document details the configuration options of the software

development kit (SDK) and the APIs available.

According to the library version applied to the software, some vehicle license plates
formats may not be supported and some functions may be available only in the most

current versions.

R
ev

is
io

n
 1.

0
.1

Integration Manual
JidoshaLight

3

www.pumatronix.com

Summary

1. JidoshaLight SDK Structure ... 6

Supported APIs ... 6

2. JidoshaLight Linux .. 7

JidoshaLight Linux software architecture ... 7

JidoshaLight Linux Restrictions ... 9

JidoshaLight Linux Installation .. 9

Hardkey Permissions Configuration ... 9

Setting Environment Variables .. 9

Preferences Archive Configuration .. 11

Example Applications ... 12

3. JidoshaLight Windows .. 13

JidoshaLight Windows Installation .. 13

Setting Environment Variables .. 14

Preferences Archive Configuration .. 14

Example Applications ... 14

4. JidoshaLight Linux/FPGA ... 15

JidoshaLight Linux/FPGA software architecture .. 15

JidoshaLight Linux/FPGA Restrictions .. 16

JidoshaLight Linux/FPGA installation ... 16

License Setting .. 16

Setting Environment Variables .. 17

Setting Linux Kernel ... 17

Example Applications ... 18

5. JidoshaLight Android™ ... 18

JidoshaLight Android™ Software Architecture .. 18

JidoshaLight Android™ Restrictions ... 19

Installing JidoshaLight Android™ .. 20

Licensing ... 20

Permissions ... 20

Example Application .. 21

R
ev

is
io

n
 1.

0
.1

Integration Manual
JidoshaLight

4

www.pumatronix.com

Package br.gaussian.io... 21

Package br.gaussian.jidoshalight .. 21

Package br.gaussian.jidoshalight.camera ... 21

Package br.gaussian.jidoshalight.sample ... 21

6. User APIs .. 25

Known Limitations ... 25

JidoshaLight C/C++ API .. 25

JidoshaLight C/C++ API (Local) .. 25

JidoshaLight C/C++ API (Synchronous Remote) .. 42

JidoshaLight C/C++ API (Asynchronous Remote) .. 43

JidoshaLight C/C++ API (Server) .. 48

Java JidoshaLight API .. 50

Java JidoshaLight API (Local) ... 50

JidoshaLight Java API (Asynchronous Remote) .. 61

Java JidoshaLight API (Server) ... 65

Java JidoshaLight API (IO/Mjpeg) ... 67

Migration Guide - API 1 C/C++ JIDOSHA .. 69

7. JIDOSHA User APIs .. 70

jidoshaCore.h ... 71

API1 JIDOSHA C/C++ ... 74

Types ... 74

Methods .. 74

API2 JIDOSHA C/C++ ... 76

Types ... 76

Methods .. 76

API 2 - Configuration ... 80

API 2 - Image Perspective Configuration ... 84

API JIDOSHA C# / VB.NET... 86

API 1 .. 86

JIDOSHA C# / VB.NET API Examples .. 88

API JIDOSHA Delphi .. 90

API 1 .. 90

R
ev

is
io

n
 1.

0
.1

Integration Manual
JidoshaLight

5

www.pumatronix.com

Example JIDOSHA Delphi API ... 90

API JIDOSHA Java... 91

API 1 .. 91

JIDOSHA Java API Example .. 91

Legacy API Special Builds .. 92

R
ev

is
io

n
 1.

0
.1

Integration Manual
JidoshaLight

6

www.pumatronix.com

1. JidoshaLight SDK Structure

All paths used in this manual are relative to the root directory of the JidoshaLight_TARGET_x.y.z SDK. The

SDK is JidoshaLight's software development kit consisting of:

• libjidoshaLight.so, libjidoshaLightRemote.so, libjidoshaLightJava.so plate recognition libraries;
• respective APIs of the libraries;
• by wrappers (bindings) for other languages;
• by pre-compiled example applications;
• by the source code of these applications;
• by a basic compilation script;
• by the Integration Manual;
• by a plate image for testing.

The SDK data packet structure contains:

Folder Content

res folder containing the manuals and a photo to use as an example in the software execution

lib folder containing the libraries (.so or .dll)

includes folders with the headers to be included in C applications

sample folder containing the sample codes for C

*Note: In the sample/bin folder are mini programs to test the operation.

wrappers folder containing bindings for other language types

jidoshapc folder containing bindings to the old Jidosha interface

Supported APIs

Jidosha's primary Application Programming Interface (API) is the JidoshaLight C/C++ API and can be found

within the include and lib folders. Wrappers (bindings) for other languages are provided along with the SDK

and are inside the wrappers folder:

1) JidoshaLight C/C++;
2) JidoshaLight Java (1.7+);
3) JidoshaLight Android;
4) JidoshaLight Python (2.7 and 3.x);
5) JidoshaLight C#.

For integration with other languages not yet supported, please contact Technical Support.

The SDK also provides a set of legacy APIs within the legacy folder. These APIs do not receive new

functionality and exist only to ensure support for legacy applications developed from Jidosha (version 1.7.0

or lower). Internally this API uses the standard JidoshaLight C/C++ API and therefore generates the same

recognition results.

Attention to APIs that are NOT recommended for new designs:

1) jidoshapc C/C+
2) jidoshapc Java (1.6+)

3) jidoshapc Python (2.7)
4) jidoshapc Delphi (Windows only)

R
ev

is
io

n
 1.

0
.1

Integration Manual
JidoshaLight

7

www.pumatronix.com

5) jidoshapc C#

2. JidoshaLight Linux

The JidoshaLight Linux software library was created to work in conjunction with the hardkey (security key)

that came with the library. That is, for the correct functioning of the library, the referred hardkey must be

connected to the USB of the environment in which the library will be used. There are two hardkey versions,

one for general use and the demo version, with expiration date. When its expiration date expires, the library

automatically returns empty plates. If your demo hardkey expires and you wish to purchase a license or

extend the demo period, please contact Pumatronix.

Check the installation prerequisites explained in the Product Manual.

JidoshaLight Linux software architecture

Calls to the library API can be made locally or remotely over an IP network.

Local calls are executed on the same thread where the call was made. For licenses with more than 1 thread

enabled or for cases where the main thread cannot be locked while the image is being processed, new

threads must be created for processing.

Remote calls can be synchronous or asynchronous. In both cases the calls are made locally, and the images

are processed remotely on a server. The license to use is required only on the server running the algorithm

and is not required for remote library use.

Synchronous calls are blocking and return the processing result at the end of the call.

In the case of the asynchronous interface, the call returns immediately and the processing result is returned

through a user callback.

The following figure presents a diagram with the architecture suggested for a Linux application that uses

the JidoshaLight library with local calls, whether single thread or multithread. For the application to function

correctly, the library 'ibjidoshaLight.so' must be linked to the application and the hardkey must be plugged

into the machine. Then, for the single thread case, just call the API functions. As for the multithread case,

the application must create the necessary processing threads and, from them, make the calls to the API

functions of the JidoshaLight library.

R
ev

is
io

n
 1.

0
.1

Integration Manual
JidoshaLight

8

www.pumatronix.com

Figure 1 – Diagram with the suggested architecture for a Linux application

The following figure shows the suggested architecture for using the library with remote calls. For the

application to function correctly, the 'libjidoshaLightRemote.so' library must be linked to the client

application. The library 'libjidoshaLight.so' must be linked to the server application and the hardkey must

be plugged into the machine. Client and server applications must be interconnected through a real or virtual

TCP/IPv4 network (loopback, for example). Although not illustrated in the figure, in the same way that for

local calls the client application may have several threads, and the server may limit the number of active

concurrent sessions depending on the license.

Figure 2 – Diagram with the suggested architecture for using the library with remote calls

R
ev

is
io

n
 1.

0
.1

Integration Manual
JidoshaLight

9

www.pumatronix.com

JidoshaLight Linux Restrictions

The library supports multithread and multiprocess applications, with the maximum number of threads of all

processes limited by the license purchased.

The library does not support process fork.

JidoshaLight Linux Installation

Hardkey Permissions Configuration

For the correct operation of the USB hardkey, the access permissions of the udev must be changed. For

its ease is included in the Jidosha SDK the script 'res/scripts/install_udev.sh' running it with the

argument '-i' will be installed the permissions automatically, it is also possible to run the script without

argument to view the options. If you prefer to install manually it is necessary to follow the following

procedures:

Add the following line:

ATTRS{idVendor}=="0403", ATTRS{idProduct}=="c580", MODE="0666"

at the end of the file corresponding to your Linux distribution:

Centos 5.2/5.4: /etc/udev/rules.d/50-udev.rules
Centos 6.0 onwards: /lib/udev/rules.d/50-udev-default.rules
Ubuntu 7.10: /etc/udev/rules.d/40-permissions.rules
Ubuntu 8.04/8.10: /etc/udev/rules.d/40-basic-permissions.rules
Ubuntu 9.04 onwards: /lib/udev/rules.d/50-udev-default.rules
openSUSE 11.2 onwards: /lib/udev/rules.d/50-udev-default.rules

For Debian, add the lines:

SUBSYSTEM=="usb_device", MODE="0666"
SUBSYSTEM=="usb", ENV{DEVTYPE}=="usb_device", MODE="0666"

And at the end of the file:

Debian 6.0 onwards: /lib/udev/rules.d/91-permissions.rules

For instructions on how to enable hardkey in other Linux distributions, contact

Pumatronix Equipamentos Eletrônicos.

Setting Environment Variables

Before running the test applications supplied with the SDK, or any other application that uses the

JidoshaLight Linux library, it is necessary to configure some environment variables for the correct

functioning of the library.

Initially it is necessary to add the directory that contains the libraries to the system search path, as below:

$ export LD_LIBRARY_PATH=./lib:$LD_LIBRARY_PATH

R
ev

is
io

n
 1.

0
.1

Integration Manual
JidoshaLight

10

www.pumatronix.com

Logging and auditing system

Attention: as of version 3.3.0 the library log system is DISABLED by default.

The JidoshaLight SDK has a log system that can be used to audit the behavior of the library in the field. To

enable some preconfigured debug messages simply export the environment variable JL_LOGCFG with the

value "default".

$ export JL_LOGCFG=default

The log system also allows you to enable other debug messages and redirect the contents of these

messages to one or more files. This functionality is configured through a configuration file whose structure

is specified below.

Reading the configuration file occurs only 1 time during the library load and has the

following search order:
1. absolute path indicated by the environment variable JL_LOGCFG (if set)

2. jlog.conf file in current directory [./]

Structure of the log system configuration file:

JLog Configuration File
This is a comment line in a JLog configuration file
Entry format:
TOPIC; LEVEL; TAG_FMT, FILES {comma separated}; SIZES {comma separated}

Special Files
[STDOUT] - prints to the screen (size always 0)
STDERR ; CRITICAL ; SIMPLE_TS ; [STDOUT], log.txt ; 0, 20MB
MSGSERVER ; INFO ; SIMPLE_TS ; [STDOUT], log.txt ; 0, 20MB
MSGSERVER ; DEBUG ; SIMPLE_TS ; [STDOUT], log.txt ; 0, 20MB
MSGSERVER ; WARN ; SIMPLE_TS ; [STDOUT], log.txt ; 0, 20MB
MSGSERVER ; NOTICE ; SIMPLE_TS ; [STDOUT], log.txt ; 0, 20MB
MSGSERVER ; CRITICAL ; SIMPLE_TS ; [STDOUT], log.txt ; 0, 20MB
ANPRMSG ; INFO ; SIMPLE_TS ; [STDOUT], log.txt ; 0, 20MB
ANPRMSG ; DEBUG ; SIMPLE_TS ; [STDOUT], log.txt ; 0, 20MB
ANPRMSG ; WARN ; SIMPLE_TS ; [STDOUT], log.txt ; 0, 20MB
ANPRMSG ; NOTICE ; SIMPLE_TS ; [STDOUT], log.txt ; 0, 20MB
ANPRMSG ; CRITICAL ; SIMPLE_TS ; [STDOUT], log.txt ; 0, 20MB
LOGGER ; INFO ; SIMPLE_TS ; [STDOUT], log.txt ; 0, 20MB
LOGGER ; CRITICAL ; SIMPLE_TS ; [STDOUT], log.txt ; 0, 20MB
LICENSE ; INFO ; SIMPLE_TS ; [STDOUT], log.txt ; 0, 20MB
LICENSE ; DEBUG ; SIMPLE_TS ; [STDOUT], log.txt ; 0, 20MB
LICENSE ; WARN ; SIMPLE_TS ; [STDOUT], log.txt ; 0, 20MB
LICENSE ; NOTICE ; SIMPLE_TS ; [STDOUT], log.txt ; 0, 20MB
LICENSE ; CRITICAL ; SIMPLE_TS ; [STDOUT], log.txt ; 0, 20MB
HARDWARE ; INFO ; SIMPLE_TS ; [STDOUT], log.txt ; 0, 20MB
HARDWARE ; CRITICAL ; SIMPLE_TS ; [STDOUT], log.txt ; 0, 20MB
JLIB ; INFO ; SIMPLE_TS ; [STDOUT], log.txt ; 0, 20MB
JLIB ; CRITICAL ; SIMPLE_TS ; [STDOUT], log.txt ; 0, 20MB
MSGANPR ; INFO ; SIMPLE_TS ; [STDOUT], log.txt ; 0, 20MB
MSGANPR ; DEBUG ; SIMPLE_TS ; [STDOUT], log.txt ; 0, 20MB
VLOOP ; INFO ; SIMPLE_TS ; [STDOUT], log.txt ; 0, 20MB

R
ev

is
io

n
 1.

0
.1

Integration Manual
JidoshaLight

11

www.pumatronix.com

The above log configuration file will cause the library to generate all enabled messages, both for the file

with relative path 'log.txt' and for the default output (stdout). If you want to inhibit one or more types of

messages, just comment the line with '#' or remove it.

To inhibit messages to stdout and write only to the log.txt file, follow the example below for each type of

message you want:

MSGANPR ; INFO ; SIMPLE_TS ; log.txt ; 20MB

Preferences Archive Configuration

The library allows optional use of a preferences file. Through this file it is possible to configure the fields of

the 'struct JidoshaLightConfig', overwriting the fields of this 'struct' passed by the API. The format is json,

as follows:

{
"jidosha-light" : {
 "config" : {
 "vehicleType" : 3,
 "processingMode" : 4,
 "timeout" : 0,
 "countryCode" : 76,
 "minProbPerChar" : 0.85,
 "maxLowProbabilityChars" : 0,
 "lowProbabilityChar" : "?",
 "avgPlateAngle" : 0.0,
 "avgPlateSlant" : 0.0,
 "maxCharHeight" : 0,
 "minCharHeight" : 0,
 "maxCharWidth" : 0,
 "minCharWidth" : 0,
 "avgCharHeight" : 0,
 "avgCharWidth" : 0,
 "xRoi" : [0,0,0,0],
 "yRoi" : [0,0,0,0],
 "ENABLE_CONFIG_OVERRIDE" : true
 }
 }
}

By default, the library looks for the jl_anpr_preferences.json file in the working directory. If the file exists,

it will be loaded; otherwise, it will be searched in the path indicated by the environment variable

JL_ANPR_PREFS. If the variable does not exist, no preferences file is loaded. If it exists and the path

indicated is a valid file, it is uploaded.

If a preferences file has been loaded, the preferences present in it will only be applied if the

'ENABLE_config_OVERRIDE' field is 'true'. Missing 'struct JidoshaLightConfig' fields from the preferences

file will receive the default value as defined by the library.

Because the preferences file is loaded at library startup (usually at the beginning of the process that uses

it), modifications to the file will only take effect when the library is reloaded. This behavior may be changed

in future versions.

R
ev

is
io

n
 1.

0
.1

Integration Manual
JidoshaLight

12

www.pumatronix.com

Example Applications

The SDK includes some sample applications with included source code:

• JidoshaLightSample: Example of local processing
• JidoshaLightSampleClient: Example of client application with asynchronous remote processing
• JidoshaLightSampleServer: Example of server application
• JidoshaLightSampleAsync: Example of asynchronous local processing with multiple threads
• JidoshaLightSampleMulti: Example of recognizing multiple plates in the same image

If you want to recompile the examples, use the make_samples.sh script:

$ cd sample/src && CXX=arm-none-linux-gnueabi-g++ && source make_samples.sh

After configuring the hardkey and environment variables and connecting the hardkey it will be possible to

run the examples.

To run JidoshaLightSample, run the sample program with the reference plate image from the terminal:

$./sample/bin/JidoshaLightSample ./res/640x480.bmp

The application should inform the version of the library as well as the result of the image recognition.

-- JidoshaLight Sample Application --
Library Info
Version: x.y.z
SHA1: abcdefghijklmnopqrstuvwxyz

-> Processing: ./res/640x480.bmp
PLATE: AJK7722 - PROB: 0.9944 - POSITION: (258,338,142,27) - TIME: 419.03 ms

To run the JidoshaLightSampleServer and JidoshaLightSampleClient examples, run the server program from

a terminal:

$./sample/bin/JidoshaLightSampleServer

The application should inform that it was initialized using the TCP 51000 port and the hardkey was found.

[2016:08:30 15:08:16.620245 : LOGGER : 0x0001 : INFO] -> Logger session started
Starting server with 1 thread(s), queue size: 10, queueTimeout: 0 ms, 1 connection(s),
port: 51000
[2016:08:30 15:08:16.621808 : MSGSERVER : 0x0001 : INFO] -> Started server at port 51000
[2016:08:30 15:08:16.631327 : HARDWARE : 0x0007 : INFO] -> Hard key attached
[2016:08:30 15:08:17.169088 : HARDWARE : 0x0008 : INFO] -> Found valid hard key

Then, in another terminal, run the client program. The client must inform the library version as well as the

result/statistic of the image recognition:

$./sample/bin/JidoshaLightSampleClient resources/images/640x480.bmp
===================================
Remote API: 127.0.0.1@51000
Threads: 1
Thread queue size: 5
Compilation_Date: Aug 30 2016 - 15:08:10
Images: 1
===================================
PLATE: AJK7722 - PROB:0.9944 - ELAPSED: 14.35 ms - returncode: 0
-- Library --
Version: 2.1.0
Build SHA1: d86e07e560206cb418fdc47b1c5108d7ac76657b

R
ev

is
io

n
 1.

0
.1

Integration Manual
JidoshaLight

13

www.pumatronix.com

Build FLAGS: I686;Linux_32;DEBUG_LEVEL=DEBUG_LV_LOG;JDONGLE_VENDOR_MODE;...

-- Total --
TotalTime: 14.35 ms (CPU: 14.35 ms)
Plates: 1
NonEmpty: 1 - 100.00 %
AverageTime: 14.35 ms

-- Load/Decode --
ElapsedTime: 0.83 ms
AverageTime: 0.83 ms (5.77 %)

-- Localization --
ElapsedTime: 7.01 ms
AverageTime: 7.01 ms (48.83 %)

-- Segmentation --
ElapsedTime: 0.69 ms
AverageTime: 0.69 ms (4.81 %)

-- Classification --
ElapsedTime: 5.72 ms
AverageTime: 5.72 ms (39.88 %)

Returning to the server terminal, check the additional log messages for license data and connection events:

[2016:08:30 15:11:24.710395 : LICENSE : 0x0006 : INFO] -> Software license to GAUSSIAN,
max.
threads 16, max. connections 16
[2016:08:30 15:11:24.710421 : LICENSE : 0x0001 : INFO] -> Valid license found 0x2137069056
[2016:08:30 15:11:24.857709 : MSGSERVER : 0x0005 : INFO] -> Accepted connection:
127.0.0.1@51000
[2016:08:30 15:11:25.563783 : MSGSERVER : 0x0007 : NOTICE] -> Dropped connection:
127.0.0.1:@51000

3. JidoshaLight Windows

The JidoshaLight Linux software library was created to work in conjunction with the hardkey (security key)

that came with the library. That is, for the correct functioning of the library, the referred hardkey must be

connected to the USB of the environment in which the library will be used. There are two hardkey versions,

one for general use and the demo version, with expiration date. When its expiration date expires, the library

automatically returns empty plates. If the demo hardkey expires, it is possible to purchase a license or

extend the demo period by contacting Pumatronix.

Check the installation prerequisites explained in the Product Manual.

JidoshaLight Windows Installation

For installation there is only the need to plug the hardkey into a windows machine that will run the software,

then windows should install a driver automatically the first time. To test the installation occurred correctly

you can run the example applications, detailed in Preferences Archive Configuration.

R
ev

is
io

n
 1.

0
.1

Integration Manual
JidoshaLight

14

www.pumatronix.com

Setting Environment Variables

Before running the test applications supplied with the SDK, or any other application that uses the

JidoshaLight Linux library, it is necessary to configure some environment variables for the correct

functioning of the library.

1. Initially, it is necessary to add the directory containing the libraries to the system search path, to
access the SDK folder and enter the command:

$ set PATH=./lib;%PATH%

NOTE: The previous command will only change the PATH for the open terminal session,
if you need to configure for the environment, it is necessary to access the control panel

> system > change settings > system properties > advanced > environment variables
and there change the value of the system variable, or user variable, called Path.

Logging and auditing system

See Logging and auditing system used in JidoshaLight Linux.

Preferences Archive Configuration

See in Preferences Archive Configuration used in JidoshaLight Linux.

Example Applications

The SDK includes some sample applications with included source code:

• JidoshaLightSample: Example of local processing
• JidoshaLightSampleClient: Example of client application with asynchronous remote processing

• JidoshaLightSampleServer: Example of server application
• JidoshaLightSampleAsync: Example of asynchronous local processing with multiple threads
• JidoshaLightSampleMulti: Example of recognizing multiple plates in the same image
• JidoshaLightSampleServerService: Example of server as a Windows service

To run JidoshaLightSample, from the SDK folder run the command below and you must get a similar output:

>sample\bin\JidoshaLightSample.exe .\res\640x480.bmp
[year:month:day time : LOGGER : 0x0001 : INFO] -> JLib log session started
[year:month:day time : JLIB : 0x0004 : INFO] -> JLib singleton created

-- JidoshaLight LPR Sample Application - 64-bit --
Compilation Date: month day year hourly
Library Info
Version: x.y.z
SHA1: sha1
[year:month:day time : HARDWARE : 0x0008 : INFO] -> Hardkey attached
[year:month:day time : HARDWARE : 0x000A : INFO] -> Hardkey access valid
[year:month:day time : LICENSE : 0x0002 : INFO] -> Licensed to company, product LPR,
threads 4, connections 1, serial 150089957 (0x8f230e5), TTL: -1
-- LicenseInfo --
>> Serial: 0x8f230e5
>> Customer: company
>> State: 0
>> TTL: -1 hours
>> MaxThreads: 4

R
ev

is
io

n
 1.

0
.1

Integration Manual
JidoshaLight

15

www.pumatronix.com

>> MaxConections: 1
FILE: ..\..\res\640x480.bmp - PLATE: AJK7722 - COUNTRY: 76 - PROB: 0.9912 - POSITION:
(258,339,142,25) - TIME: 12.41 ms

Exiting
[year:month:day time : JLIB : 0x0002 : INFO] -> JLib network module stopped
[year:month:day time : JLIB : 0x0005 : INFO] -> JLib singleton destroyed
[year:month:day time : LOGGER : 0x0002 : INFO] -> JLib log session stopped

4. JidoshaLight Linux/FPGA

The JidoshaLight Linux software library with FPGA acceleration is licensed from a hardware-linked license

file, without the need to use hardkey (security key). This library supports hardware acceleration based on

Xilinx FPGAs from the Zynq-7000 family. By default, it has support for the XC7Z020-CLG400 device, and

can be adapted for larger capacity devices.

Check the installation prerequisites explained in the Product Manual.

JidoshaLight Linux/FPGA software architecture

The software architecture is like that of the non-accelerated Linux version, described in JidoshaLight Linux.

The main differences are in the additional device programming interfaces and in the shared memory

reserved area. The configuration and installation details are specific and are described in Installation.

The following figures illustrate the architecture suggested for both local and remote APIs.

Figure 3 – Diagram with local API use cases

R
ev

is
io

n
 1.

0
.1

Integration Manual
JidoshaLight

16

www.pumatronix.com

It is expected that in the first license plate reading call JidoshaLight will take longer
than in subsequent calls, as the first call loads important information used by Jidosha

into the computer's memory.

Figure 4 – Diagram with remote API use cases

JidoshaLight Linux/FPGA Restrictions

The FPGA-accelerated library supports multithreaded applications, with the maximum number of threads

limited by the license purchased. Multiprocess applications are not supported.

JidoshaLight Linux/FPGA installation

License Setting

The library is licensed through a file linked to the device used.

To obtain the identifier of your hardware it is necessary to run the JidoshaLightDna application from the

terminal of the device properly configured as described in Setting Environment Variables.

$./tools/JidoshaLightDna
0xFEDCBA9876543210

IMPORTANT: Concurrent use of this application with any other using the library is not
allowed and may cause crashes.

R
ev

is
io

n
 1.

0
.1

Integration Manual
JidoshaLight

17

www.pumatronix.com

Setting Environment Variables

Before running the test applications supplied with the SDK, or any other application that uses the

JidoshaLight Linux library, it is necessary to configure some environment variables for the correct

functioning of the library.

When using the version with FPGA acceleration, in addition to the variables described in Setting

environmental variables, the settings described below are necessary:

• JL_MPOOL_BASE: Memory base address for communication between library and FPGA. If not set,
the default value is 0x3A000000. E.g.:

$ export JL_MPOOL_BASE=0x3A000000

• JL_MPOOL_BUFFERNUM: Number of memory buffers required to run the library. If not defined, the
default value is 32 buffers, with the minimum required value being 12 *buffers* per thread that
uses the library concurrently. E.g.:

$ export JL_MPOOL_BUFFERNUM=32

• JL_MPOOL_BUFFERSIZE: Size of each memory buffer, requiring a multiple of 4096 bytes. If not set,
the default value is 2097152 *bytes* (2MB). This is the value required to process images up to
800x600 pixels. This value needs to be greater than 4 times the image resolution. E.g.:

$ export JL_MPOOL_BUFFERSIZE=2097152

• JL_LICENSE_FILE: Path to the license file. The license file is linked to the device used. For the
identifier, see License Setting. E.g.:

$ export JL_LICENSE_FILE=./license.bin

Setting Linux Kernel

For communication between the library and the FPGA device, two interfaces are required, one dedicated

for configuration of the FPGA and a shared memory for data exchange.

The configuration interface is provided by Xilinx via a char device (/dev/xdevcfg) and is not currently part

of the standard Linux kernel. Source code and instructions for installation can be found on the Xilinx Wiki

page.

Shared memory must be visible in /dev/mem and reserved for library use only, and cannot be used by the

Linux *kernel*.

To do so, it is necessary to limit the amount of memory used by the kernel when booting it.

Below is an example for reserving the last 96MB of memory from a device with 1GB of RAM. In u-boot,

configure:

set bootargs 'root=/dev/ram mem=928M rw'

To make the /dev/mem device available, use CONFIG_DEVMEM=y in kconfig in the kernel build process.

Also add the following settings to the Linux device tree (DTS):

memory {
 device_type = "memory";
 reg = <0x3A000000 0x6000000>;
};

http://www.wiki.xilinx.com/Linux+Drivers
http://www.wiki.xilinx.com/Linux+Drivers

R
ev

is
io

n
 1.

0
.1

Integration Manual
JidoshaLight

18

www.pumatronix.com

reserved-memory {
 #address-cells = <1>;
 #size-cells = <1>;
 ranges;

 linux,cma {
 compatible = "shared-dma-pool";
 reusable;
 size = 0x6000000;
 alignment = 0x1000;
 linux,cma-default;
 };
};

Example Applications

See Example Applications used for JidoshaLight Linux.

5. JidoshaLight Android™

The JidoshaLight Android™ software library is designed to work in conjunction with the license file that

must be generated after the application is installed by the user. The license file is generated per installation

and is linked to the device hardware, requiring a new license in case of reinstallation of the application or

modification of the device hardware, including the SIM card of the device. Replacing the battery does not

require a new license. For temporary licenses, released for a limited time, the date and time of the

equipment must be synchronized with the cellular network.

The library supports multithreaded applications, with the maximum number of threads and the minimum

processing time limited by the license purchased. For the use of the server API, the maximum number of

simultaneous connections it accepts is also limited by the license.

JidoshaLight Android library features are accessed via the Java API. This version is compatible with arm™

processors (armv7-a) with Android™ 4.4 or higher operating system for library use (shared libraries and

basic Java classes) and Android™ 8 or higher for demo application installation.

JidoshaLight Android™ Software Architecture

The most recommended way to work with the JidoshaLight library on Android platform is through the

asynchronous client and server topology. This topology allows optimizing the flow of the plate recognition

process, since all memory processing and allocation takes place in native code. This topology also makes it

possible to process the images externally without changes in the application. The demo application that

accompanies the SDK implements this topology.

Usually, a better user experience is obtained in freeflow mode. In freeflow mode, as opposed to "point and

shoot", the plate recognition process is done on all images sent by the camera, without the need for

intervention (shot) by the user. Thus, as soon as the camera is triggered, processing begins and callbacks

with recognition results are generated asynchronously. The asynchronous client and server topology

can work in freeflow mode without any significant change in application implementation.

Asynchronous freeflow customer positives points:

R
ev

is
io

n
 1.

0
.1

Integration Manual
JidoshaLight

19

www.pumatronix.com

1. Simplification of application code, facilitating library integration
2. Improved user experience (faster recognitions)
3. Automatic resource management (queues, threads, network)
4. Greater decoupling between image acquisition (camera), processing (LPR) and output (UI and DB)
5. Local or remote processing capability without source code modification

Asynchronous freeflow client negative points:

1. Callbacks occur in a separate thread to the UI thread, requiring synchronization (runOnUiThread)
2. Callbacks are issued sequentially and cannot block (callback code must be light and fast)
3. Asynchronous error handling is usually more complex

Figure 5 - Example of flow for a freeflow asynchronous client application: MainActivity configures the

library license and starts the processing server, CameraActivity configures the plate reading client, the

camera (CameraSource) and handles the events

JidoshaLight Android™ Restrictions

ATTENTION: The memory restrictions presented below do not apply to memory

allocated natively (within the shared library).
For high-performance applications, the use of the asynchronous client API is

recommended.

The Android™ operating system has strict restrictions on the use of RAM by applications. The maximum

amount of memory an application can allocate in the heap varies between devices, but is around 24MB to

36MB. If an application tries to allocate more memory than it is allowed to, an 'OutOfMemoryError' exception

occurs and the application is terminated by the operating system.

Since the resolution of the cameras of smartphones and tablets is increasing, the developer must pay

attention to the size of the images that he/she intends to recognize in order to mitigate the possibility of

an exception of the type 'OutOfMemoryError'. For example, an 8MP image in Bitmap format ARGB8888

occupies 24MB, which would be enough to overcome the memory limit on multiple devices.

Because JidoshaLight needs the plate characters to be no more than 30 pixels tall, an image with a

resolution of 1280x720 is sufficient for plate recognition purposes. If you want to display a high-resolution

image to the user, you can acquire and store the image in high-resolution and for processing use the

resolution-reducing decoding methods supported by the Android™ class 'android.graphics.Bitmap'. In this

R
ev

is
io

n
 1.

0
.1

Integration Manual
JidoshaLight

20

www.pumatronix.com

case, one must take into account the reduction of the characters in the process of reducing the image size,

ensuring the size of 15 to 30 pixels in the reduced image.

Another important specificity of the Android™ operating system is related to the locking of the graphical

interface thread. By default, the graphical interface thread is the only one created by the application and

all processing is performed on it. For the graphical interface to remain responsive to user actions, it should

not block for more than a few milliseconds. If this occurs, the operating system will issue an alert to the

user reporting that the application has stopped responding or will simply stop the application. For more

information about memory management on Android:

• https://developer.android.com/training/articles/memory.html
• https://developer.android.com/training/displaying-bitmaps/index.html?hl=en

Installing JidoshaLight Android™

ATTENTION: All Java classes that have methods marked as native cannot have their

package changed.
All other classes can be moved freely.

The reading library development SDK of JidoshaLight vehicle license plates for Android accompanies the

API and the shared native C-language libraries (shared, which can be accessed by any JNI code), the

wrappers and libraries for Java interface and a demo application described in Example Application.

Licensing

A valid license file is required for the operation of the JidoshaLight library on Android™ systems. The

licensing is done by device and by time, requiring a new licensing if the equipment has its hardware

characteristics changed or the term of the license has expired.

The JidoshaLight.setLicenseFromData () API must be used to pass the contents of the license file to the

library and must be made before any other call to other API functions. The

JidoshaLightAndroidHelper.java class also brings some utility functions that help in the license loading

process.

The license request procedure is fully automated by the JidoshaLight.getLicenseFromServer function,

requiring only the user to register the Device ID with Pumatronix. The LicenseManagerFragment.java class

of the sample application shows how to request the Device ID and how to request a server license.

For more information about licensing devices, please contact Technical Support.

Permissions

The following permissions are required for the library to function and must be included in the application's

'AndroidManifest.xml':

<!-- Required permissions to use the library (required) -->
<uses-permission android:name="android.permission.WRITE_EXTERNAL_STORAGE"/>
<uses-permission android:name="android.permission.READ_EXTERNAL_STORAGE"/>
<!-- Permissions required to use the device camera (optional) -->
<uses-feature android:name="android.hardware.camera" android:required="true" />
<uses-permission android:name="android.permission.CAMERA" />
<!-- Permissions required to use the MJPEG camera (optional) -->
<uses-permission android:name="android.permission.INTERNET"/>

https://developer.android.com/training/articles/memory.html
https://developer.android.com/training/displaying-bitmaps/index.html?hl=pt-br

R
ev

is
io

n
 1.

0
.1

Integration Manual
JidoshaLight

21

www.pumatronix.com

Example Application

The sample app that comes with the SDK is designed for use with Android™ Studio 4 or higher. It shows

how to use the library to recognize the plates of a video stream coming from the back camera of your

phone or an external MJPEG camera. It also brings an example of implementation to the configuration

screen of the library parameters, Camera activity with grid and zoom support, recognition list, recognition

details, licensing system and database integration to search for information related to the detected license

plate.

Package br.gaussian.io

• Mjpeg.java: Class wrapper over the native API of the MJPEG decoder. See the MjpegCamera.java
class for a higher-level implementation.

Package br.gaussian.jidoshalight

• JidoshaLight.java: Class containing local API functions (license plate recognition and licensing) and
function return codes

• JidoshaLightRemote.java: Class containing asynchronous remote API functions
• JidoshaLightServer.java: Class containing server API roles

Package br.gaussian.jidoshalight.camera

• BaseCameraSource.java: Base class for all camera deployments
• BackCamera.java: Implementation for smartphone rear camera
• MjpegCamera.java: Implementation for an external MJPEG camera
• CameraFrame.java: Class that stores a frame of a camera
• CameraView.java: View capable of displaying a stream of images from a BaseCameraSource;

provides grid support, plate overlay, pinch zoom, and ROI selection

Package br.gaussian.jidoshalight.sample

Common

• common/JidoshaLightAndroidHelper.java: Auxiliary class containing support methods for the
process of reading and writing the license file, in addition to other utility methods.

• common/JidoshaLightServerHelper.java: Auxiliary class containing support methods for local LPR
server startup.

Activities
• MainActivity: Main application activity, shows you how to configure the license file and initialize the

local plate-reading server.

R
ev

is
io

n
 1.

0
.1

Integration Manual
JidoshaLight

22

www.pumatronix.com

Figure 6 – MainActivity

• DetailActivity: Activity triggered when selecting an item from the recognition list. Expands the
information of a given recognition.

Figure 7 - DetailActivity

• CameraActivity: Exemplifies the process of configuring and capturing camera images, allowing:

1) Instantiate a camera from the settings;
2) Set up a plate processing client;
3) Configure the optical zoom through the pinch movement;
4) Select the region of interest (ROI) through touch;
5) Enable/disable processing.

R
ev

is
io

n
 1.

0
.1

Integration Manual
JidoshaLight

23

www.pumatronix.com

For better recognition performance, camera focus and zoom should allow you to capture images with good

sharpness and size. The height of the plate should be between 30 and 50 pixels. The guides are intended

to assist in framing the plate, ensuring the correct size and orientation of the plate at the time of capture.

The plate should be approximately the size of a grid rectangle.

Since that the camera of the smartphone or tablet is constantly moving, it is ideal, when existing, to activate

the auto-focus and video stabilization features of the device. Depending on the application, it is

recommended to export manual focus and exposure adjustments for a better result.

Figure 8 – CameraActivity: The ideal plate height for recognition must be the same as a grid rectangle

(the plate does not need to be aligned with the grid)

Figure 9 - ROI selection: 1) Tap and hold on the screen to enable the use of the ROI, 2) Double tap to

start the selection of ROI points, 3) Tap on the four points that delimit the region (clockwise)

Fragments
• ConfigurationFragment: Fragment used to display and configure JidoshaLight library parameters.

Configurable parameters are the same as available in the Java/C API

R
ev

is
io

n
 1.

0
.1

Integration Manual
JidoshaLight

24

www.pumatronix.com

• LicenseManagerFragment: Fragment used to implement the licensing system. Shows how to read
the Device ID and how to request a server license file

Changing some settings and the license file requires the application to be restarted.

R
ev

is
io

n
 1.

0
.1

Integration Manual
JidoshaLight

25

www.pumatronix.com

6. User APIs

The JidoshaLight library exports 4 distinct APIs for automatic plate recognition:

• Local
• Synchronous Remote
• Asynchronous Remote
• Server.

The Synchronous Remote API will be discontinued in the future and should not be used in new projects. In

addition to the recognition APIs, the library provides some utility functions, such as a video receiver in

MJPEG format and a license reader. These supplemental APIs are partially documented in this manual. For

more information on use, see the headers in the include/gaussian/common folder.

By default, the API-supported languages that accompany the SDK are C/C++ and Java. Wrappers in Python,

C# and Delphi can be supplied on demand.

If you have any questions or support for other languages, please contact Pumatronix's Technical Support.

Known Limitations

The following are the known limitations of the JidoshaLight library:

1) When the library is loaded dynamically (LoadLibrary on Windows, dlopen on Linux), it cannot
be downloaded (FreeLibrary and dlclose, respectively).

2) On Linux, the process where the library runs cannot be forked.
3) In the case of concurrent use and in the same process as JidoshaLight with the Jidosha

Container or Jidosha Rail library, JidoshaLight must be loaded last. This limitation will be
removed in a future version of the libraries.

JidoshaLight C/C++ API

The library's native Application Programming Interface (API) is written in C language, which makes it easy

to create bindings for use in other languages. The entire API C is available through a set of headers within

the include folder of the SDK.

JidoshaLight C/C++ API (Local)

The Local API contains the basic types, settings, and functions for local image processing. Since release

2.4.4 its contents are divided between jidosha_light_api_common.h and jidosha_light_api.h files.

To maintain compatibility with previous versions, header 'jidosha_light_api_common.h'
is included with 'jidosha_light_api.h'.

jidosha_light_api_common.h
//==
// CODES
//==
enum JidoshaLightVehicleType {
 JIDOSHA_LIGHT_VEHICLE_TYPE_CAR = 1,
 JIDOSHA_LIGHT_VEHICLE_TYPE_MOTO = 2,

R
ev

is
io

n
 1.

0
.1

Integration Manual
JidoshaLight

26

www.pumatronix.com

 JIDOSHA_LIGHT_VEHICLE_TYPE_BOTH = 3
};

enum JidoshaLightMode {
 JIDOSHA_LIGHT_MODE_DISABLE = 0,
 JIDOSHA_LIGHT_MODE_FAST = 1,
 JIDOSHA_LIGHT_MODE_NORMAL = 2,
 JIDOSHA_LIGHT_MODE_SLOW = 3,
 JIDOSHA_LIGHT_MODE_ULTRA_SLOW = 4,

 /* the following values can be added to one of the above modes */
 JIDOSHA_LIGHT_LOCALIZATION_MODE_0 = 0 << 8,
 JIDOSHA_LIGHT_LOCALIZATION_MODE_1 = 1 << 8,
 JIDOSHA_LIGHT_LOCALIZATION_MODE_2 = 2 << 8
};

/* ISO 3166-1 */
enum JidoshaLightCountryCode {
 JIDOSHA_LIGHT_COUNTRY_CODE_CONESUL = 0,
 JIDOSHA_LIGHT_COUNTRY_CODE_SAFETYPLATES = 3,
 JIDOSHA_LIGHT_COUNTRY_CODE_ARGENTINA = 32,
 JIDOSHA_LIGHT_COUNTRY_CODE_BOLIVIA = 68,
 JIDOSHA_LIGHT_COUNTRY_CODE_BRAZIL = 76,
 JIDOSHA_LIGHT_COUNTRY_CODE_CHILE = 152,
 JIDOSHA_LIGHT_COUNTRY_CODE_COLOMBIA = 170,
 JIDOSHA_LIGHT_COUNTRY_CODE_COSTA_RICA = 188,
 JIDOSHA_LIGHT_COUNTRY_CODE_ECUADOR = 218,
 JIDOSHA_LIGHT_COUNTRY_CODE_FRANCE = 250,
 JIDOSHA_LIGHT_COUNTRY_CODE_ITALY = 380,
 JIDOSHA_LIGHT_COUNTRY_CODE_MEXICO = 484,
 JIDOSHA_LIGHT_COUNTRY_CODE_NETHERLANDS = 528,
 JIDOSHA_LIGHT_COUNTRY_CODE_PANAMA = 591,
 JIDOSHA_LIGHT_COUNTRY_CODE_PARAGUAY = 600,
 JIDOSHA_LIGHT_COUNTRY_CODE_PERU = 604,
 JIDOSHA_LIGHT_COUNTRY_CODE_EGYPT = 818,
 JIDOSHA_LIGHT_COUNTRY_CODE_USA = 840,
 JIDOSHA_LIGHT_COUNTRY_CODE_URUGUAY = 250
};

enum JidoshaLightReturnCode {
 /* success */
 JIDOSHA_LIGHT_SUCCESS = 0,
 /* basic errors */
 JIDOSHA_LIGHT_ERROR_FILE_NOT_FOUND = 1,
 JIDOSHA_LIGHT_ERROR_INVALID_IMAGE = 2,
 JIDOSHA_LIGHT_ERROR_INVALID_IMAGE_TYPE = 3,
 JIDOSHA_LIGHT_ERROR_INVALID_PROPERTY = 4,
 JIDOSHA_LIGHT_ERROR_COUNTRY_NOT_SUPPORTED = 5,
 JIDOSHA_LIGHT_ERROR_API_CALL_NOT_SUPPORTED = 6,
 JIDOSHA_LIGHT_ERROR_INVALID_ROI = 7,
 JIDOSHA_LIGHT_ERROR_INVALID_HANDLE = 8,
 JIDOSHA_LIGHT_ERROR_API_CALL_HAS_NO_EFFECT = 9,
 JIDOSHA_LIGHT_ERROR_INVALID_IMAGE_SIZE = 10,
 /* license errors */
 JIDOSHA_LIGHT_ERROR_LICENSE_INVALID = 16,
 JIDOSHA_LIGHT_ERROR_LICENSE_EXPIRED = 17,

R
ev

is
io

n
 1.

0
.1

Integration Manual
JidoshaLight

27

www.pumatronix.com

 JIDOSHA_LIGHT_ERROR_LICENSE_MAX_THREADS_EXCEEDED = 18,
 JIDOSHA_LIGHT_ERROR_LICENSE_UNTRUSTED_RTC = 19,
 JIDOSHA_LIGHT_ERROR_LICENSE_MAX_CONNS_EXCEEDED = 20,
 JIDOSHA_LIGHT_ERROR_LICENSE_UNAUTHORIZED_PRODUCT = 21,
 /* others */
 JIDOSHA_LIGHT_ERROR_OTHER = 999
};

enum JidoshaLightReturnCodeNetwork {
 /* network errors */
 JIDOSHA_LIGHT_ERROR_SERVER_CONNECT_FAILED = 100,
 JIDOSHA_LIGHT_ERROR_SERVER_DISCONNECTED = 101,
 JIDOSHA_LIGHT_ERROR_SERVER_QUEUE_TIMEOUT = 102,
 JIDOSHA_LIGHT_ERROR_SERVER_QUEUE_FULL = 103,
 JIDOSHA_LIGHT_ERROR_SOCKET_IO_ERROR = 104,
 JIDOSHA_LIGHT_ERROR_SOCKET_WRITE_FAILED = 105,
 JIDOSHA_LIGHT_ERROR_SOCKET_READ_TIMEOUT = 106,
 JIDOSHA_LIGHT_ERROR_SOCKET_INVALID_RESPONSE = 107,
 JIDOSHA_LIGHT_ERROR_HANDLE_QUEUE_FULL = 108,
 JIDOSHA_LIGHT_ERROR_SERVER_CONN_LIMIT_REACHED = 213,
 JIDOSHA_LIGHT_ERROR_SERVER_VERSION_NOT_SUPPORTED = 214,
 JIDOSHA_LIGHT_ERROR_SERVER_NOT_READY = 215
};

 /* Raw image pixel format */
enum JidoshaLightRawImgFmt {
 JIDOSHA_LIGHT_IMG_FMT_XRGB_8888 = 0,
 JIDOSHA_LIGHT_IMG_FMT_RGB_888 = 1,
 JIDOSHA_LIGHT_IMG_FMT_LUMA = 2,
 JIDOSHA_LIGHT_IMG_FMT_YUV420 = 3
};

//==
// TYPES
//==
// JidoshaLightConfig
//==
typedef struct JidoshaLightConfig
{
 int configId; // Unique Configuration ID
 int vehicleType; // Vehicle type
 int processingMode; // Processing Mode
 int timeout; // Processing timeout in milliseconds
 int countryCode; // Plate Syntax Country

 float minProbPerChar; // Range [0,1] - Minimal probability to accept a
 // given character recognition
 int maxLowProbabilityChars; // Max number of characters whose propability is
lower
 // than minProbPerChar to accept a recognition
 char lowProbabilityChar; // ASCII encodded character that will replace
characters
 // with probability lower than minProbPerChar
 float avgPlateAngle; // Average plate angle
 float avgPlateSlant; // Average plate slant

R
ev

is
io

n
 1.

0
.1

Integration Manual
JidoshaLight

28

www.pumatronix.com

 int maxCharHeight; // Max acceptable char height in pixels (0 ==
default value)
 int minCharHeight; // Min acceptable char height in pixels (0 ==
default value)
 int maxCharWidth; // Max acceptable char width in pixels (0 ==
default value)
 int minCharWidth; // Min acceptable char width in pixels (0 ==
default value)
 int avgCharHeight; // Average char height in pixels (0 == default
value)
 int avgCharWidth; // Average char width in pixels (0 == default
value)

 int xRoi[4]; // ROI points - x coords
 int yRoi[4]; // ROI points - y coords

} JidoshaLightConfig;

//==
// JidoshaLightRecognition
//==
typedef struct JidoshaLightRecognitionInfo
{
 double totalTime;
 double localizationTime;
 double segmentationTime;
 double classificationTime;
 double loadDecodeTime;
 int libVersion[3];
 char libSHA1[41];

} JidoshaLightRecognitionInfo;

typedef struct JidoshaLightRecognition
{
 int frameId; // Unique Recognition ID
 char plate[8]; // Plate text + byte 0 (null-terminated string)
 float probabilities[7]; // Range [0,1] - Recognition probability of each
character

 int xText; // Plate up-left corner X coord
 int yText; // Plate up-left corner Y coord
 int widthText; // Plate Width
 int heightText; // Plate Height

 int xChar[7]; // Individual character up-left corner X coord
 int yChar[7]; // Individual character up-left corner Y coord
 int widthChar[7]; // Individual character width
 int heightChar[7]; // Individual character height

 int textColor; // 0: dark text over bright background,
 // 1: bright text over dark background

 int isMotorcycle; // 0: false, 1: true
 int countryCode; // ISO 3166-1

R
ev

is
io

n
 1.

0
.1

Integration Manual
JidoshaLight

29

www.pumatronix.com

 JidoshaLightRecognitionInfo info; // Overall recognition benchmark information

} JidoshaLightRecognition;

//==
// JidoshaLightLicenseInfo
//==
typedef struct JidoshaLightLicenseInfo
{
 uint64_t serial;
 char customer[64];
 int maxThreads;
 int maxConnections;
 int state;
 int ttl;
} JidoshaLightLicenseInfo;

//==
// JidoshaLightRecognitionList
//==
typedef struct JidoshaLightRecognitionList JidoshaLightRecognitionList;
JL_API JidoshaLightRecognitionList* jidoshaLight_ANPR_createList();
JL_API JidoshaLightRecognitionList*
jidoshaLight_ANPR_duplicateList(JidoshaLightRecognitionList* list);
JL_API int jidoshaLight_ANPR_destroyList(JidoshaLightRecognitionList* list);
JL_API int jidoshaLight_ANPR_getListSize(JidoshaLightRecognitionList* list);
JL_API const JidoshaLightRecognition*
jidoshaLight_ANPR_getListElement(JidoshaLightRecognitionList* list, int pos);

//==
// JidoshaLightImage
//==
typedef struct JidoshaLightImage JidoshaLightImage;
JL_API JidoshaLightImage* jidoshaLight_ANPR_createImage();
JL_API JidoshaLightImage* jidoshaLight_ANPR_duplicateImage(JidoshaLightImage* img);
JL_API int jidoshaLight_ANPR_destroyImage(JidoshaLightImage* img);
JL_API int jidoshaLight_ANPR_setImageLazyDecode(JidoshaLightImage* img, int enable);
JL_API int jidoshaLight_ANPR_loadImageFromFile(
 JidoshaLightImage* img,
 const char* filename
);
JL_API int jidoshaLight_ANPR_loadImageFromMemory(
 JidoshaLightImage* img,
 const uint8_t* buffer,
 int bufferSize
);
JL_API int jidoshaLight_ANPR_loadImageFromRawImgFmt(
 JidoshaLightImage* img,
 const uint8_t* buffer,
 int width,
 int height,
 int stride,
 JidoshaLightRawImgFmt fmt
);

//==

R
ev

is
io

n
 1.

0
.1

Integration Manual
JidoshaLight

30

www.pumatronix.com

// Library Information
//==
JL_API int jidoshaLight_getVersion(int* major, int* minor, int* release);
JL_API const char* jidoshaLight_getBuildSHA1(); // ASCII encoded SHA1
JL_API const char* jidoshaLight_getBuildFlags(); // ASCII encoded Build Flags
JL_API int jidoshaLight_getLicenseInfo(JidoshaLightLicenseInfo* info);
JL_API int jidoshaLight_isRemoteApi();

//==
// Utilities
//==
JL_API const char* jidoshaLight_getReturnCodeString(int rc);

jidosha_light_api.h
//==
// PROCESSING
//==
JL_API int jidoshaLight_ANPR_fromFile (
 const char* filename,
 JidoshaLightConfig* config,
 JidoshaLightRecognition* rec
);

JL_API int jidoshaLight_ANPR_fromMemory (
 const unsigned char* buffer,
 int bufferSize,
 JidoshaLightConfig* config,
 JidoshaLightRecognition* rec
);

JL_API int jidoshaLight_ANPR_fromLuma (
 unsigned char* luma,
 int width,
 int height,
 JidoshaLightConfig* config,
 JidoshaLightRecognition* rec
);

JL_API int jidoshaLight_ANPR_fromRawImgFmt (
 const unsigned char* buffer,
 int width,
 int height,
 int stride,
 JidoshaLightRawImgFmt fmt,
 JidoshaLightConfig* config,
 JidoshaLightRecognition* rec
);

JL_API int jidoshaLight_ANPR_fromImage(
 JidoshaLightImage* img,
 JidoshaLightConfig* config,
 JidoshaLightRecognition* rec
);

JL_API int jidoshaLight_ANPR_multi_fromImage (
 JidoshaLightImage* img,

R
ev

is
io

n
 1.

0
.1

Integration Manual
JidoshaLight

31

www.pumatronix.com

 JidoshaLightConfig* config,
 int maxPlates,
 JidoshaLightRecognitionList* list
);

Types
enum JidoshaLightVehicleType

Description Defines the types of plate that the OCR should look for in the image.

Members

JIDOSHA_LIGHT_VEHICLE_TYPE_CAR: car plates only

JIDOSHA_LIGHT_VEHICLE_TYPE_MOTORCYCLE: motorcycle plates only

JIDOSHA_LIGHT_VEHICLE_TYPE_BOTH: both license plate types

enum JidoshaLightMode

Description
Defines the processing strategies that can be used by the plate-reading algorithm. FAST uses
the least computational effort possible for reading while ULTRA_SLOW uses the largest. The

higher the level of effort, the greater the probability of reading the plate.

Members

JIDOSHA_LIGHT_VEHICLE_TYPE_CAR: car plates only

JIDOSHA_LIGHT_MODE_DISABLE: value reserved for future use. Currently has the same

effect as ULTRA_SLOW OPTION
JIDOSHA_LIGHT_MODE_FAST: faster processing strategy, its use is advised for cases where

processing time is critical
JIDOSHA_LIGHT_MODE_NORMAL: Moderate processing strategy, has higher processing time

and recognition index than FAST method
JIDOSHA_LIGHT_MODE_SLOW: slow processing strategy, has higher processing time and

recognition index than NORMAL method
JIDOSHA_LIGHT_MODE_ULTRA_SLOW: super slow processing strategy, has the longest

processing time and the highest recognition index
One of the above modes must necessarily be used. In addition, one can optionally select the

localization strategy used by the plate-reading algorithm. LOCALIZATION_MODE_0 is the
default. The other options currently only affect plate processing in Brazil.
JIDOSHA_LIGHT_LOCALIZATION_MODE_0: localization strategy with longer processing time

and higher recognition index
JIDOSHA_LIGHT_LOCALIZATION_MODE_1: slightly faster localization strategy with slightly

lower recognition index
JIDOSHA_LIGHT_LOCALIZATION_MODE_2: fast localization strategy, with lower recognition

index, applicable only to license plates, not motorcycles

enum JidoshaLightCountryCode

Description
Sets the code of the countries supported by the recognition library in ISO 3166-1 format. The

use of a particular country is limited by the license.

Members

JIDOSHA_LIGHT_COUNTRY_CODE_CONESUL
JIDOSHA_LIGHT_COUNTRY_CODE_SAFETYPLATE

JIDOSHA_LIGHT_COUNTRY_CODE_ARGENTINA
JIDOSHA_LIGHT_COUNTRY_CODE_BOLIVIA

JIDOSHA_LIGHT_COUNTRY_CODE_BRAZIL

JIDOSHA_LIGHT_COUNTRY_CODE_CHILE
JIDOSHA_LIGHT_COUNTRY_CODE_COLOMBIA

JIDOSHA_LIGHT_COUNTRY_CODE_COSTA_RICA
JIDOSHA_LIGHT_COUNTRY_CODE_ECUADOR

JIDOSHA_LIGHT_COUNTRY_CODE_FRANCE
JIDOSHA_LIGHT_COUNTRY_CODE_ITALY

JIDOSHA_LIGHT_COUNTRY_CODE_MEXICO

JIDOSHA_LIGHT_COUNTRY_CODE_NETHERLANDS

R
ev

is
io

n
 1.

0
.1

Integration Manual
JidoshaLight

32

www.pumatronix.com

JIDOSHA_LIGHT_COUNTRY_CODE_PANAMA

JIDOSHA_LIGHT_COUNTRY_CODE_PARAGUAY
JIDOSHA_LIGHT_COUNTRY_CODE_PERU

JIDOSHA_LIGHT_COUNTRY_CODE_EGYPT
JIDOSHA_LIGHT_COUNTRY_CODE_USA

JIDOSHA_LIGHT_COUNTRY_CODE_URUGUAY

enum JidoshaLightRawImgFmt

Description Sets the raw format types supported by the library.

Members

JIDOSHA_LIGHT_IMG_FMT_XRGB_8888: 32-bit XRGB format, with the least significant byte

used for the blue channel (*Blue*). The most significant byte is ignored
JIDOSHA_LIGHT_IMG_FMT_RGB_888: 24-bit RGB format, with the least significant byte used

for the blue channel (*Blue*)
JIDOSHA_LIGHT_IMG_FMT_LUMA: 8-bit format containing luminance channel only

JIDOSHA_LIGHT_IMG_FMT_YUV420: 8-bit YUV format not interlaced with 4:2:0 subsampling

struct JidoshaLightConfig

Description Sets the raw format types supported by the library.

Members

int configId: field reserved for future use, has its value ignored by the library

int vehicleType: indicates the type of plate that the OCR should look for. See enum

JidoshaLightVehicleType
int processingMode: indicates the processing strategy to be used. See JidoshaLightMode

enum
int timeout: indicates the maximum time in milliseconds for plate recognition. The value

'0' indicates that there is no timeout. A value other than '0' helps keep the average

processing time low - processing is stopped and the function returns as soon as the timeout
expires. The value should be determined based on the resolution of the image and CPU used
int countryCode: indicates the country code whose license plate is to be recognized. See

JidoshaLightCountryCode enum
float minProbPerChar: value from '0.0f' to '1.0f' used to define the minimum probability

that a given character of the plate must have to be considered valid (recommended: 0.85)
int maxLowProbabilityChars: maximum number of characters with probability less than

'minProbPerChar' for the recognized plate to be considered valid - a plate recognized as
invalid is returned as an empty string '\0'
lowProbabilityChar char: character that will be used to replace those with a probability

lower than 'minProbPerChar'
float avgPlateAngle: average angle of the plates in the images in relation to the

horizontal axis
float avgPlateSlant: average angle of the slope of the characters in the images in

relation to the vertical axis
 int maxCharHeight: maximum acceptable character height, in pixels

 int minCharHeight: minimum acceptable character height, in pixels

 int maxCharWidth: maximum acceptable character width, in pixels

 int minCharWidth: minimum acceptable character width, in pixels

 int avgCharHeight: average character height, in pixels (default: 20)

 int avgCharWidth: average character width, in pixels (default value: 7)

int xRoi[4] and intyRoi [4]: x and y coordinates of the four points of the region of

interest (ROI) in any order.
A region of interest is understood as a quadrilateral within the image where it is expected to

find the plates to be recognized. The use of ROI benefits the processing time and the rate of
hits, since it excludes shoulder regions or places of no importance for the plate recognition

process. Setting all coordinates to zero will cause the ROI to be ignored and the entire image

to be processed. Values larger than the image dimensions or negative result in the return of

R
ev

is
io

n
 1.

0
.1

Integration Manual
JidoshaLight

33

www.pumatronix.com

the JIDOSHA_LIGHT_ERROR_INVALID_ROI error code. The change of these values causes the

recalculation of the ROI region, impacting the processing time of the first image after the

change.

Attention: The coordinates of the ROI points have their origin (0.0) in the upper left

corner of the image and extend to the lower right corner (width-1, height-1). Thus for

an 800x600 resolution image, the valid values for the ROI points range from (0.0) to
(799.599). It should also be noted that the 4 points cannot be collinear.

Figure 10- How to calculate avgPlateAngle and avgPlateSlant values

struct JidoshaLightRecognitionInfo

Description
The purpose of this structure is to bring information related to the processing time of
JidoshaLight, facilitating the performance diagnosis. All times are given in milliseconds.

Members

double totalTime: total image processing time (sum of the other times).
double localizationTime: time spent on the plate localization step in the
image.
double segmentationTime: time spent in the step of extracting the
characters from the plate.
double classificationTime: time spent in the step of classifying the
characters from the plate.
double loadDecodeTime: time spent reading and decoding the image file.
int libVersion[3]: version of the library that processed the image.
char libSHA1[41]: identifier of the library that processed the image.

struct JidoshaLightRecognition

Description
The purpose of this structure is to store the result of the plate recognition, including: the
characters of the plate, the reliability of each character, and the coordinates of the plate in

the image.

Members

int frameId: field reserved for future use, its value is always zeroed.

char plate[8]: 7-character plate ending with 0, or empty string if the plate was not found.

float probabilities[7]: values from 0.0 to 1.0 indicating the reliability, in the form of

probability, of the recognition of each character.

R
ev

is
io

n
 1.

0
.1

Integration Manual
JidoshaLight

34

www.pumatronix.com

int xText and int yText: coordinates of the upper left corner of the plate, if found.

int widthText: width of the plate rectangle.

int heightText: height of the plate rectangle.

int xChar[7] and int yChar[7]: coordinate the upper left corner of each of the

recognized characters.
int widthChar[7]: width of the rectangle of each of the recognized characters.

int heightChar[7]: height of the rectangle of each of the recognized characters.

int textColor: plate text color, 0 - dark, 1 - light.

int isMotorcycle: indicates if plate is motorcycle, 0 - non-motorcycle, 1 - motorcycle.

int countryCode: indicates the country code (in ISO 3166-1 standard) of the recognized

plate. Possible values for this field are defined in the enum JidoshaLightCountryCode.
JidoshaLightRecognitionInfo: structure containing processing time information.

struct JidoshaLightLicenseInfo

Description Structure used to store information about the license used by the JidoshaLight library.

Members

uint64_t serial: serial license number

char customer[64]: name of the customer who purchased the license

int maxThreads: maximum number of processing threads enabled

int maxConnections: maximum number of parallel connections enabled

int state: license status (see Function return codes)

int ttl: time-to-live in hours for RTC type licenses. This field has the value -1 if the license is
not expired

struct JidoshaLightRecognitionList

Description

Opaque type used by the library to return a list of objects of type JidoshaLightRecognition.

Functions that manipulate the list insert new elements at the end of the list. To clear a list,
simply destroy and create a new one.

To avoid memory leaks, the user must always destroy the lists that are no longer used.
This type is not thread safe.

Members None

Related

methods

jidoshaLight_ANPR_createList

jidoshaLight_ANPR_duplicateList

jidoshaLight_ANPR_destroyList
jidoshaLight_ANPR_getListSize

jidoshaLight_ANPR_getListElement

struct JidoshaLightImage

Description

Opaque type used by the library to load an image to be processed. Once created, a

JidoshaLightImage object can be used to upload numerous images, even if they are of
different formats. However, subsequent calls cause the previously uploaded content to be

overwritten.

The image decode process can be postponed to processing time if LazyDecode mode is
enabled. In this situation, the load functions only store the contents of the raw buffer of the

image without performing any processing. This behavior is useful for client-server
applications since the computational cost of the decode is delegated to the server.

To avoid memory leaks, the user must always destroy images that are no longer in use.

This type is not thread safe.

Members None

Related

methods

jidoshaLight_ANPR_createImage
jidoshaLight_ANPR_duplicateImage

jidoshaLight_ANPR_destroyImage
jidoshaLight_ANPR_setImageLazyDecode

R
ev

is
io

n
 1.

0
.1

Integration Manual
JidoshaLight

35

www.pumatronix.com

jidoshaLight_ANPR_loadImageFromFile

jidoshaLight_ANPR_loadImageFromMemory
jidoshaLight_ANPR_loadImageFromRawImgFmt

Methods
jidoshaLight_ANPR_createList

Function

Prototype

JidoshaLightRecognitionList* jidoshaLight_ANPR_createList();

Description Function used to create an empty JidoshaLightRecognitionList

Parameters None

Return
A valid pointer for the JidoshaLightRecognitionList or NULL type in case of
failure.

jidoshaLight_ANPR_duplicateList

Function

Prototype

JidoshaLightRecognitionList*
jidoshaLight_ANPR_duplicateList(JidoshaLightRecognitionList* list);

Description Function used to duplicate a JidoshaLightRecognitionList

Parameters JidoshaLightRecognitionList* list: pointer to a JidoshaLightRecognitionList object

Return
A valid pointer for the JidoshaLightRecognitionList or NULL type in case of
failure.

jidoshaLight_ANPR_destroyList

Function

Prototype

int jidoshaLight_ANPR_destroyList(JidoshaLightRecognitionList* list);

Description
Function used to destroy objects created by jidoshaLight_ANPR_createList and
jidoshaLight_ANPR_duplicateList functions

Parameters JidoshaLightRecognitionList* list: pointer to a JidoshaLightRecognitionList object

Return
JIDOSHA_LIGHT_SUCCESS return code in case of success, another code otherwise (see

Function return codes)

jidoshaLight_ANPR_getListSize

Function

Prototype

int jidoshaLight_ANPR_getListSize(JidoshaLightRecognitionList* list);

Description Function used to read the amount of elements stored within the list

Parameters JidoshaLightRecognitionList* list: pointer to a JidoshaLightRecognitionList object

Return
Number of elements present in the list (value greater than or equal to zero) or -1 in case of

error (* invalid list).

jidoshaLight_ANPR_getListElement

Function
Prototype

const JidoshaLightRecognition*
jidoshaLight_ANPR_getListElement(JidoshaLightRecognitionList* list, int
pos);

Description
Function used to retrieve a pointer to the element present in the pos position of the list. The

content of the returned pointer cannot be modified by the user (const).

Parameters
JidoshaLightRecognitionList* list: pointer to a JidoshaLightRecognitionList object

int pos: position of the element to be retrieved in the range '[0,ListSize)

Return
Valid pointer to an immutable object of type JidoshaLightRecognition or NULL in case of error
(list invalid or pos out of range).

R
ev

is
io

n
 1.

0
.1

Integration Manual
JidoshaLight

36

www.pumatronix.com

jidoshaLight_ANPR_createImage

Function
Prototype

JidoshaLightImage* jidoshaLight_ANPR_createImage();

Description Function used to create a JidoshaLightImage

Parameters None

Return Valid pointer for type JidoshaLightImage or NULL in case of failure.

jidoshaLight_ANPR_duplicateImage

Function

Prototype

JidoshaLightImage* jidoshaLight_ANPR_duplicateImage(JidoshaLightImage*
img);

Description
Function used to create a JidoshaLightImage. The duplicate image inherits the state of the

original image.

Parameters JidoshaLightImage* img: pointer to a JidoshaLightImage object

Return Valid pointer for type JidoshaLightImage or NULL in case of failure.

jidoshaLight_ANPR_destroyImage

Function

Prototype

int jidoshaLight_ANPR_destroyImage(JidoshaLightImage* img);

Description
Function used to destroy objects created by jidoshaLight_ANPR_createImage and

jidoshaLight_ANPR_duplicateImage functions

Parameters JidoshaLightImage* img: pointer to a JidoshaLightImage object

Return
JIDOSHA_LIGHT_SUCCESS return code in case of success, another code otherwise (see

Function return codes)

jidoshaLight_ANPR_setImageLazyDecode

Function

Prototype

int jidoshaLight_ANPR_setImageLazyDecode(JidoshaLightImage* img, int
enable);

Description
Function used to enable LazyDecode mode (see description in JidoshaLightImage). The

change has immediate effect and invalidates any previously uploaded image.

Parameters
JidoshaLightImage* img: pointer to a JidoshaLightImage object
int enable: 0 disabled (default), 1 enabled

Return
JIDOSHA_LIGHT_SUCCESS return code in case of success, another code otherwise (see
Function return codes)

jidoshaLight_ANPR_loadImageFromFile

Function

Prototype

int jidoshaLight_ANPR_loadImageFromFile (
 JidoshaLightImage* img,
 const char* filename
);

Description
Function used to load a JidoshaLightImage from a file.

Supported file formats: JPEG, BMP, PNG and TIFF.

Parameters
JidoshaLightImage* img: pointer to a JidoshaLightImage object
const char* filename: absolute path to the file to be uploaded

Return
JIDOSHA_LIGHT_SUCCESS return code in case of success, another code otherwise (see

Function return codes)

R
ev

is
io

n
 1.

0
.1

Integration Manual
JidoshaLight

37

www.pumatronix.com

jidoshaLight_ANPR_loadImageFromMemory

Function

Prototype

int jidoshaLight_ANPR_loadImageFromMemory (
 JidoshaLightImage* img,
 const uint8_t* buffer,
 int bufferSize
);

Description
Function used to load a JidoshaLightImage from a file already loaded in memory.

Supported file formats: JPEG, BMP, PNG, and TIFF.

Parameters
JidoshaLightImage* img: pointer to a JidoshaLightImage object
const uint8_t* buffer: pointer to the buffer containing the uploaded file

int bufferSize: size in buffer bytes

Return
JIDOSHA_LIGHT_SUCCESS return code in case of success, another code otherwise (see
Function return codes)

jidoshaLight_ANPR_loadImageFromRawImgFmt

Function

Prototype

int jidoshaLight_ANPR_loadImageFromRawImgFmt (
 JidoshaLightImage* img,
 const uint8_t* buffer,
 int width,
 int height,
 int stride,
 JidoshaLightRawImgFmt fmt
);

Description
Function used to load a JidoshaLightImage from a buffer containing an image in RAW format.
See supported formats in enum JidoshaLightRawImgFmt

Parameters

JidoshaLightImage* img: pointer to a JidoshaLightImage object

const uint8_t* buffer: pointer to the buffer containing the image in RAW format
int width: width in pixels of the image

int height: height in pixels of the image
int stride: size in bytes of an image line

JidoshaLightRawImgFmt fmt: image format

Return
JIDOSHA_LIGHT_SUCCESS return code in case of success, another code otherwise (see

Function return codes)

jidoshaLight_ANPR_fromFile

Function

Prototype

int jidoshaLight_ANPR_fromFile (
 const char* filename,
 JidoshaLightConfig* config,
 JidoshaLightRecognition* rec
);

Description

Recognizes a plate from an image file whose path is provided in const char* filename.

Uses the settings defined in JidoshaLightConfig* config and returns the recognition result in

the JidoshaLightRecognition* rec struct. If a plate cannot be found in the image, the rec-
>plate field is returned empty.

If an error occurs during processing, the JidoshaLightRecognition* rec structure will be
returned empty and a different value of JIDOSHA_LIGHT_SUCCESS will be returned by the

function. Possible return values are defined in the enum JidoshaLightReturnCode.

See supported formats in jidoshaLight_ANPR_loadImageFromFile.

Parameters

const char* filename: path to the image file.

JidoshaLightConfig* config: pointer to the 'struct JidoshaLightConfig' with the configuration for
the library. A 'NULL' pointer in this parameter causes the use of the library's default settings.

R
ev

is
io

n
 1.

0
.1

Integration Manual
JidoshaLight

38

www.pumatronix.com

JidoshaLightRecognition* rec: pointer to the 'struct JidoshaLightRecognition' where the

reading result will be stored.

Return
JIDOSHA_LIGHT_SUCCESS return code in case of success, another code otherwise (see

Function return codes)

jidoshaLight_ANPR_fromMemory

Function
Prototype

int jidoshaLight_ANPR_fromMemory (
 const unsigned char* buffer,
 int bufferSize,
 JidoshaLightConfig* config,
 JidoshaLightRecognition* rec
);

Description

Recognizes a license plate from a buffer containing an image file previously loaded in memory.

Uses the settings defined in JidoshaLightConfig* config and returns the recognition result in
the JidoshaLightRecognition* rec struct. If a plate cannot be found in the image, the rec-

>plate field is returned empty.
If an error occurs during processing, the JidoshaLightRecognition* rec structure will be

returned empty and a different value of JIDOSHA_LIGHT_SUCCESS will be returned by the

function. Possible return values are defined in the enum JidoshaLightReturnCode.
See supported formats in jidoshaLight_ANPR_loadImageFromMemory.

Parameters

const unsigned char* buffer: array of bytes containing the image.
int bufferSize: size of the byte array.

JidoshaLightConfig* config: pointer to the 'struct JidoshaLightConfig' with the configuration for
the library. A 'NULL' pointer in this parameter causes the use of the library's default settings.

JidoshaLightRecognition* rec: pointer to the 'struct JidoshaLightRecognition' where the

reading result will be stored.

Return
JIDOSHA_LIGHT_SUCCESS return code in case of success, another code otherwise (see

Function return codes)

jidoshaLight_ANPR_fromLuma

Function
Prototype

int jidoshaLight_ANPR_fromLuma (
 unsigned char* luma,
 int width,
 int height,
 JidoshaLightConfig* config,
 JidoshaLightRecognition* rec
);

Description

Recognizes a license plate from a buffer containing an 8-bit raw grayscale image.

Uses the settings defined in JidoshaLightConfig* config and returns the recognition result in
the JidoshaLightRecognition* rec struct. If a plate cannot be found in the image, the rec-

>plate field is returned empty.
If an error occurs during processing, the JidoshaLightRecognition* rec structure will be

returned empty and a different value of JIDOSHA_LIGHT_SUCCESS will be returned by the

function. Possible return values are defined in the enum JidoshaLightReturnCode.

Parameters

unsigned char* luma: array of bytes containing the image in 8-bit RAW grayscale format.

int width: image width.
int height: image height.

JidoshaLightConfig* config: pointer to the 'struct JidoshaLightConfig' with the configuration for

the library. A 'NULL' pointer in this parameter causes the use of the library's default settings.
JidoshaLightRecognition* rec: pointer to the 'struct JidoshaLightRecognition' where the

reading result will be stored.

Return
JIDOSHA_LIGHT_SUCCESS return code in case of success, another code otherwise (see

Function return codes)

R
ev

is
io

n
 1.

0
.1

Integration Manual
JidoshaLight

39

www.pumatronix.com

jidoshaLight_ANPR_fromRawImgFmt

Function

Prototype

int jidoshaLight_ANPR_fromRawImgFmt (
 const unsigned char* buffer,
 int width,
 int height,
 int stride,
 JidoshaLightRawImgFmt fmt,
 JidoshaLightConfig* config,
 JidoshaLightRecognition* rec
);

Description

Reconhece uma placa a partir de um buffer contendo uma imagem em algum dos formatos

RAW definidos na enum JidoshaLightRawImgFmt.

Uses the settings defined in JidoshaLightConfig* config and returns the recognition result in
the JidoshaLightRecognition* rec struct. If a plate cannot be found in the image, the rec-

>plate field is returned empty.
If an error occurs during processing, the JidoshaLightRecognition* rec structure will be

returned empty and a different value of JIDOSHA_LIGHT_SUCCESS will be returned by the

function. Possible return values are defined in the enum JidoshaLightReturnCode.
See supported formats in jidoshaLight_ANPR_loadImageFromRawImgFmt.

Parameters

const unsigned char* buffer: array of bytes containing the image in RAW format.
int width: image width.

int height: image height.
int stride: size in bytes of an image line

JidoshaLightRawImgFmt fmt: image format

JidoshaLightConfig* config: pointer to the 'struct JidoshaLightConfig' with the configuration for
the library. A 'NULL' pointer in this parameter causes the use of the library's default settings.

JidoshaLightRecognition* rec: pointer to the 'struct JidoshaLightRecognition' where the
reading result will be stored.

Return
JIDOSHA_LIGHT_SUCCESS return code in case of success, another code otherwise (see
Function return codes)

jidoshaLight_ANPR_fromImage

Function

Prototype

int jidoshaLight_ANPR_fromImage(
 JidoshaLightImage* img,
 JidoshaLightConfig* config,
 JidoshaLightRecognition* rec
);

Description

Recognizes a plate from a previously loaded JidoshaLightImage.
Uses the settings defined in JidoshaLightConfig* config and returns the recognition result in

the JidoshaLightRecognition* rec struct. If a plate cannot be found in the image, the rec-

>plate field is returned empty.
If an error occurs during processing, the JidoshaLightRecognition* rec structure will be

returned empty and a different value of JIDOSHA_LIGHT_SUCCESS will be returned by the
function. Possible return values are defined in the enum JidoshaLightReturnCode.

Parameters

JidoshaLightImage* img: pointer to a valid JidoshaLightImage
JidoshaLightConfig* config: pointer to the 'struct JidoshaLightConfig' with the configuration for

the library. A 'NULL' pointer in this parameter causes the use of the library's default settings.

JidoshaLightRecognition* rec: pointer to the 'struct JidoshaLightRecognition' where the
reading result will be stored.

Return
JIDOSHA_LIGHT_SUCCESS return code in case of success, another code otherwise (see
Function return codes)

R
ev

is
io

n
 1.

0
.1

Integration Manual
JidoshaLight

40

www.pumatronix.com

jidoshaLight_ANPR_multi_fromImage

Function

Prototype

int jidoshaLight_ANPR_multi_fromImage (
 JidoshaLightImage* img,
 JidoshaLightConfig* config,
 int maxPlates,
 JidoshaLightRecognitionList* list
);

Description

Recognizes multiple plates from a previously loaded JidoshaLightImage.

Uses the settings defined in JidoshaLightConfig* config adds 'maxPlates' recognitions to the

end of the 'JidoshaLightRecognitionList* list'. If the number of plates found is less than the
specified value, empty 'JidoshaLightRecognition' elements will be added to the list until filling

in 'maxPlates'.
If an empty JidoshaLightRecognition element error occurs, it will be added to the list and a

return code other than JIDOSHA_LIGHT_SUCCESS will be returned by the function (see enum

JidoshaLightReturnCode).

Parameters

JidoshaLightImage* img: pointer to a valid JidoshaLightImage

JidoshaLightConfig* config: pointer to the 'struct JidoshaLightConfig' with the configuration for
the library. A 'NULL' pointer in this parameter causes the use of the library's default settings.

int maxPlates: maximum number of plates to be recognized (1 or more)
JidoshaLightRecognitionList* list: pointer to a JidoshaLightRecognitionList object where new

JidoshaLightRecognition maxPlates will be added.

Return
JIDOSHA_LIGHT_SUCCESS return code in case of success, another code otherwise (see

Function return codes)

jidoshaLight_getVersion

Function
Prototype

int jidoshaLight_getVersion(int* major, int* minor, int* release);

Description Used to check the version of the library, in major.minor.release format.

Parameters
int major, minor, release: pointers to int variables where the numbers that make up the

version will be written.

Return Always returns JIDOSHA_LIGHT_SUCCESS.

jidoshaLight_getBuildSHA1

Function

Prototype
const char* jidoshaLight_getBuildSHA1();

Description Used to check the SHA1 of the library build.

Parameters None

Return
Returns a pointer to the beginning of a string ending in \0 containing the value of the build

SHA1.

jidoshaLight_getBuildFlags

Function

Prototype
const char* jidoshaLight_getBuildFlags();

Description Used to check library build options.

Parameters None

Return Returns a pointer to the beginning of a string ending in \0 containing the build options.

R
ev

is
io

n
 1.

0
.1

Integration Manual
JidoshaLight

41

www.pumatronix.com

jidoshaLight_isRemoteApi

Function
Prototype

JL_API int jidoshaLight_isRemoteApi();

Description Checks whether the application library implements local or remote processing.

Parameters None

Return
Returns 0 if the API is implemented with local access or different from this value if the
processing is remote.

jidoshaLight_getLicenseInfo

Function
Prototype

int jidoshaLight_getLicenseInfo(JidoshaLightLicenseInfo* info)

Description Function used to read the license information used by the JidoshaLight library.

Parameters JidoshaLightLicenseInfo* info: pointer to a JidoshaLightLicenseInfo struct

Return Returns JIDOSHA_LIGHT_SUCCESS on success.

jidoshaLight_getReturnCodeString

Function

Prototype
const char* jidoshaLight_getReturnCodeString(int rc)

Description Function used to convert a library return code into a C string.

Parameters
int rc: some return code defined in enum JidoshaLightReturnCode and enum

JidoshaLightReturnCodeNetwork

Return String representative of the error code.

Function return codes

The function return codes are related to the recognition process ('enum JidoshaLightReturnCode') or the

remote communication process ('enum JidoshaLightReturnCodeNetwork'). Codes:

• JIDOSHA_LIGHT_ERROR_FILE_not_FOUND: returned by the jidoshaLight_ANPR_fromFile and
jidoshaLight_ANPR_loadImageFromFile functions when the specified file path does not exist.

• JIDOSHA_LIGHT_ERROR_INVALID_IMAGE: returned by image processing and loading functions.
Occurs when the past image is corrupted.

• JIDOSHA_LIGHT_ERROR_invalid_IMAGE_TYPE: Returned by jidoshaLight_ANPR_fromFile,
jidoshaLight_ANPR_fromMemory, and JidoshaLightImage load-related functions. Occurs when
attempting to process an image of unsupported format.

• JIDOSHA_LIGHT_ERROR_invalid_IMAGE_SIZE: Returned by jidoshaLight_ANPR_fromFile,
jidoshaLight_ANPR_fromMemory, and JidoshaLightImage load-related functions. Occurs when
attempting to process an image whose size exceeds the maximum limits supported by the library
(arm Zynq: 1280x960px, Others: 2500x2500px).

• JIDOSHA_LIGHT_ERROR_invalid_PROPERTY: returned by all functions that have arguments. Occurs
when the argument is invalid. In the case of functions that receive pointers, this code is returned
when the argument is NULL (except in cases where NULL is a valid value for the argument).

• JIDOSHA_LIGHT_ERROR_country_not_SUPPORTED: returned by ANPR functions when the
country code provided in the configuration structure is not supported by the library.

• JIDOSHA_LIGHT_ERROR_API_CALL_NOT_SUPPORTED: Returned when an API function is not
available for a given platform.

R
ev

is
io

n
 1.

0
.1

Integration Manual
JidoshaLight

42

www.pumatronix.com

• JIDOSHA_LIGHT_ERROR_INVALID_ROI: returned when an invalid region of interest is provided.
See the description of JidoshaLightConfig struct for more information.

• JIDOSHA_LIGHT_ERROR_INVALID_HANDLE: returned when the handle passed to the function was
not initialized correctly.

• JIDOSHA_LIGHT_ERROR_API_CALL_HAS_NO_EFFECT: returned when an API function had no
effect when executed. It can occur when there is precedence between calls.

• JIDOSHA_LIGHT_ERROR_LICENSE_INVALID: returned by ANPR functions when hardkey is not
present or has problems. Contact Pumatronix Equipamentos Eletrônicos for more information.

• JIDOSHA_LIGHT_ERROR_LICENSE_EXPIRED: Returned by ANPR functions when a demo-type
hardkey has expired. Contact Pumatronix Equipamentos Eletrônicos for more information.

• JIDOSHA_LIGHT_ERROR_LICENSE_MAX_THREADS_EXCEEDED: returned by ANPR functions when
the maximum number of competing threads exceeds that allowed by the license.

• JIDOSHA_LIGHT_ERROR_LICENSE_UNTRUSTED_RTC: returned by ANPR functions when a license
with use-by date does not have a reliable time/date reference available.

• JIDOSHA_LIGHT_ERROR_OTHER: returned when an unexpected error occurs. Contact Pumatronix
Equipamentos Eletrônicos for support.

• JIDOSHA_LIGHT_ERROR_SERVER_CONNECT_FAILED: Returned when a remote API call cannot
connect to the server.

• JIDOSHA_LIGHT_ERROR_SERVER_DISCONNECTED: Returned when a remote session with the
server was unexpectedly closed.

• JIDOSHA_LIGHT_ERROR_SERVER_QUEUE_TIMEOUT: Returned when a request was dropped on
the server by timeout.

• JIDOSHA_LIGHT_ERROR_SERVER_QUEUE_FULL: returned when a request was dropped on the
server due to lack of queue space.

• JIDOSHA_LIGHT_ERROR_SOCKET_IO_ERROR: Returned when a network IO error occurred in a
remote session with the server.

• JIDOSHA_LIGHT_ERROR_SOCKET_WRITE_FAILED: Returned when error occurs in sending
messages between client and remote server.

• JIDOSHA_LIGHT_ERROR_SOCKET_READ_TIMEOUT: returned when error occurs in receiving
messages between client and remote server.

• JIDOSHA_LIGHT_ERROR_SOCKET_INVALID_RESPONSE: returned when an invalid message was
received.

• JIDOSHA_LIGHT_ERROR_HANDLE_QUEUE_FULL: returned when the pending request queue
reached the maximum for a given asynchronous handle.

• JIDOSHA_LIGHT_ERROR_SERVER_CONN_LIMIT_REACHED: Returned when trying to connect to a
server with the maximum number of open sessions.

• JIDOSHA_LIGHT_ERROR_SERVER_VERSION_NOT_SUPPORTED: returned when the server version
is not compatible with the client library version.

• JIDOSHA_LIGHT_ERROR_SERVER_NOT_READY: returned when the server is starting more is not
yet ready to process images. The customer should wait and try to reconnect.

JidoshaLight C/C++ API (Synchronous Remote)

The Synchronous Remote API extends the Local API, allowing you to configure a remote server to process

images remotely rather than locally. It should be used in conjunction with the libjidoshaLightRemote.so

library.

The jidoshaLight_ANPR calls defined in the Local API remain valid, but processing becomes remote when

the application is linked with libjidoshaLightRemote.so.

//==

R
ev

is
io

n
 1.

0
.1

Integration Manual
JidoshaLight

43

www.pumatronix.com

// FUNCTIONS
//==
JL_API int jidoshaLight_setRemoteSyncServerIp(
 const char* ip,
 unsigned int port
);

Methods
jidoshaLight_setRemoteSyncServerIp

Function

Prototype

JL_API int jidoshaLight_setRemoteSyncServerIp(
 const char* ip,
 unsigned int port
);

Description
Configures globally the IP address and TCP port used for connection to a license plate

recognition server. The session is established and closed at each recognition call.

Parameters
const char* ip: string containing the IP address of the server.
int port: integer containing the TCP port of the server.

Return
JIDOSHA_LIGHT_SUCCESS return code in case of success, another code otherwise (see

Function return codes)

JidoshaLight C/C++ API (Asynchronous Remote)

The Asynchronous Remote API extends the Local API, allowing you to configure a remote server that will

process images remotely rather than processing them locally. It should be used in conjunction with the

libjidoshaLightRemote.so library.

//==
// TYPES
//==
typedef struct JidoshaLightHandle JidoshaLightHandle;

/* Recognition result callback function pointer */
typedef void (*JCallback) (
 JidoshaLightRecognition rec,
 int rc,
 uint8_t* buffer,
 unsigned int bufferSize,
 void* arg
);

typedef struct JidoshaLightClientConfig
{
 int queueSize;
 const char* ip;
 int port;
 JCallback callback;
 void* arg;
} JidoshaLightClientConfig;

typedef struct JidoshaLightServerInfo
{
 JidoshaLightLicenseInfo license;
 int major;
 int minor;

R
ev

is
io

n
 1.

0
.1

Integration Manual
JidoshaLight

44

www.pumatronix.com

 int release;
} JidoshaLightServerInfo;

//==
// FUNCTION CALLS
//==
// HANDLE
//==
JL_API JidoshaLightHandle* jl_async_create_handle(JidoshaLightClientConfig* clientConfig);
JL_API int jl_async_destroy_handle(JidoshaLightHandle* handle);
JL_API int jl_async_connect(JidoshaLightHandle* handle);
JL_API int jl_async_connect_info(JidoshaLightHandle* handle, JidoshaLightServerInfo* info);
JL_API int jl_async_get_localqueue_size(JidoshaLightHandle* handle);

//==
// PROCESSING
//==
JL_API int jl_async_ANPR_fromFile (
 JidoshaLightHandle* handle,
 const char* filename,
 JidoshaLightConfig* config
);

JL_API int jl_async_ANPR_fromMemory (
 JidoshaLightHandle* handle,
 const unsigned char* buffer,
 unsigned int bufferSize,
 JidoshaLightConfig* config
);

JL_API int jl_async_ANPR_fromLuma (
 JidoshaLightHandle* handle,
 unsigned char* luma,
 int width,
 int height,
 JidoshaLightConfig* config
);

JL_API int jl_async_ANPR_fromRawImgFmt (
 JidoshaLightHandle* handle,
 const unsigned char* buffer,
 int width,
 int height,
 int stride,
 JidoshaLightRawImgFmt fmt,
 JidoshaLightConfig* config
);

JL_API int jl_async_ANPR_fromImage (
 JidoshaLightHandle* handle,
 JidoshaLightImage* img,
 JidoshaLightConfig* config
);

JL_API int jl_async_ANPR_multi_fromImage (
 JidoshaLightHandle* handle,

R
ev

is
io

n
 1.

0
.1

Integration Manual
JidoshaLight

45

www.pumatronix.com

 JidoshaLightImage* img,
 JidoshaLightConfig* config,
 int maxPlates
);

Types
struct JidoshaLightHandle

Description The purpose of this structure is to store the client object of a plate recognition server.

Members None

typedef void JCallback

Description
The purpose of this type is to define the format of the user callback for receiving events from
the server.

Members

struct JidoshaLightRecognition rec: struct where the recognition result will be stored
int rc: requisition return code (see Function return codes)

uint8_t* buffer: pointer to the image where the recognition was performed (this pointer is
only valid during the execution of the callback)

unsigned int bufferSize: image size

void* arg: pointer to opaque structure provided by the user in the creation of the handle

struct JidoshaLightClientConfig

Description
The purpose of this structure is to define the connection parameters between the client and

the server.

Members

int queueSize: maximum size of pending requests for this handle.

const char* ip: string containing the IP address of the server.
int port: integer containing the TCP port of the server.

JCallback callback: function designated for processing the results generated by the server.

void* arg: opaque pointer to user data structure used for handling server events. This pointer
is passed as user callback parameter.

struct JidoshaLightServerInfo

Description Struct used to store license and version information of a JidoshaLight server.

Members

JidoshaLightLicenseInfo license: structure containing server license information - see struct

JidoshaLightLicenseInfo
int major: major value of the library version used by the server

int minor: minor value of the library version used by the server
int release: value of the release of the version of the library used by the server

Methods
jl_async_create_handle

Function

Prototype

JidoshaLightHandle* jl_async_create_handle(
 JidoshaLightClientConfig* config
);

Description Creates the handle of an assicron client for connection to a plate recognition server.

Parameters JidoshaLightClientConfig* config: configuration for this handle.

Return Returns a pointer to the handle of type JidoshaLightHandle or NULL in case of error.

R
ev

is
io

n
 1.

0
.1

Integration Manual
JidoshaLight

46

www.pumatronix.com

jl_async_destroy_handle

Function

Prototype

int jl_async_destroy_handle(
 JidoshaLightHandle* handle
);

Description
Deallocates the handle of an assicron client, closing the connection to the plate recognition

server.

Parameters JidoshaLightHandle* handle: pointer to the handle created by jl_async_create_handle.

Return
JIDOSHA_LIGHT_SUCCESS return code in case of success, another code otherwise (see

Function return codes)

jl_async_connect

Function
Prototype

int jl_async_connect(
 JidoshaLightHandle* handle
);

Description
Establishes the session with the plate recognition server for a given handle. This function

blocks until the connection is established or timeout occurs.

Parameters JidoshaLightHandle* handle: pointer to the handle created by jl_async_create_handle.

Return
JIDOSHA_LIGHT_SUCCESS return code in case of success, another code otherwise (see

Function return codes)

jl_async_connect_info

Function
Prototype

int jl_async_connect_info(
 JidoshaLightHandle* handle,
 JidoshaLightServerInfo* info
);

Description
It has the same functionality as the jl_async_connect function but receives an additional

parameter to receive information about the license and the server version.

Parameters
JidoshaLightHandle* handle: pointer to the handle created by jl_async_create_handle.
JidoshaLightServerInfo* info: Pointer to a JidoshaLightServerInfo struct

Return
JIDOSHA_LIGHT_SUCCESS return code in case of success, another code otherwise (see
Function return codes)

jl_async_get_localqueue_size

Function

Prototype

int jl_async_get_localqueue_size(
 JidoshaLightHandle* handle
);

Description Returns the queue size of pending requests on the client side for a given handle.

Parameters JidoshaLightHandle* handle: Pointer to the handle created by jl_async_create_handle

Return Returns the number of pending requisitions in the local (client) queue.

jl_async_ANPR_fromFile

Function

Prototype

int jl_async_ANPR_fromFile(
 JidoshaLightHandle* handle,
 const char* filename,
 JidoshaLightConfig* config
);

Description See description of method jidoshaLight_ANPR_fromFile

R
ev

is
io

n
 1.

0
.1

Integration Manual
JidoshaLight

47

www.pumatronix.com

Parameters

JidoshaLightHandle* handle: Pointer to the handle created by jl_async_create_handle

const char* filename: See description of method jidoshaLight_ANPR_fromFile
JidoshaLightConfig* config: See description of method jidoshaLight_ANPR_fromFile

Return See description of method jidoshaLight_ANPR_fromFile

jl_async_ANPR_fromMemory

Function
Prototype

int jl_async_ANPR_fromMemory(
 JidoshaLightHandle* handle,
 const unsigned char* buffer,
 unsigned int bufferSize,
 JidoshaLightConfig* config
);

Description See description of method jidoshaLight_ANPR_fromMemory

Parameters

JidoshaLightHandle* handle: Pointer to the handle created by jl_async_create_handle
const unsigned char* buffer: See description of method jidoshaLight_ANPR_fromMemory

unsigned int bufferSize:See description of method jidoshaLight_ANPR_fromMemory
JidoshaLightConfig* config: See description of method jidoshaLight_ANPR_fromMemory

Return See description of method jidoshaLight_ANPR_fromMemory

jl_async_ANPR_fromLuma

Function

Prototype

int jl_async_ANPR_fromLuma(
 JidoshaLightHandle* handle,
 unsigned char* luma,
 int width,
 int height,
 JidoshaLightConfig* config
);

Description See description of method jidoshaLight_ANPR_fromLuma

Parameters

JidoshaLightHandle* handle: Pointer to the handle created by jl_async_create_handle

unsigned char* luma: See description of method jidoshaLight_ANPR_fromLuma.
int width: See description of method jidoshaLight_ANPR_fromLuma.

int height: See description of method jidoshaLight_ANPR_fromLuma.
JidoshaLightConfig config: See description of method jidoshaLight_ANPR_fromLuma.

Return See description of method jidoshaLight_ANPR_fromLuma

jl_async_ANPR_fromRawImgFmt

Function

Prototype

int jl_async_ANPR_fromRawImgFmt (
 JidoshaLightHandle* handle,
 const unsigned char* buffer,
 int width,
 int height,
 int stride,
 JidoshaLightRawImgFmt fmt,
 JidoshaLightConfig* config,
 JidoshaLightRecognition* rec
);

Description See description of method jidoshaLight_ANPR_fromRawImgFmt

R
ev

is
io

n
 1.

0
.1

Integration Manual
JidoshaLight

48

www.pumatronix.com

Parameters

JidoshaLightHandle* handle: Pointer to the handle created by jl_async_create_handle

const unsigned char* buffer: See description of method jidoshaLight_ANPR_fromRawImgFmt.
int width: See description of method jidoshaLight_ANPR_fromRawImgFmt.

int height: See description of method jidoshaLight_ANPR_fromRawImgFmt.
int stride: See description of method jidoshaLight_ANPR_fromRawImgFmt.

JidoshaLightRawImgFmt fmt: See description of method jidoshaLight_ANPR_fromRawImgFmt.
JidoshaLightConfig* config: See description of method jidoshaLight_ANPR_fromRawImgFmt.

JidoshaLightRecognition: See description of method jidoshaLight_ANPR_fromRawImgFmt.

Return See description of method jidoshaLight_ANPR_fromRawImgFmt

jl_async_ANPR_fromImage

Function
Prototype

int jl_async_ANPR_fromImage (
 JidoshaLightHandle* handle,
 JidoshaLightImage* img,
 JidoshaLightConfig* config
);

Description See description of method jidoshaLight_ANPR_fromImage.

Parameters
JidoshaLightHandle* handle: Pointer to the handle created by jl_async_create_handle
JidoshaLightImage* img: See description of method jidoshaLight_ANPR_fromImage.

JidoshaLightConfig* config: See description of method jidoshaLight_ANPR_fromImage.

Return See description of method jidoshaLight_ANPR_fromImage.

jl_async_ANPR_multi_fromImage

Function
Prototype

int jl_async_ANPR_multi_fromImage (
 JidoshaLightHandle* handle,
 JidoshaLightImage* img,
 JidoshaLightConfig* config,
 int maxPlates
);

Description

Recognizes multiple plates from a previously loaded JidoshaLightImage, causing multiple calls

to the callback function. A set of recognitions belonging to the same image can be identified
by the int frameId field of the JidoshaLightRecognition structure

See description of method jidoshaLight_ANPR_multi_fromImage for details.

Parameters

JidoshaLightHandle* handle: Pointer to the handle created by jl_async_create_handle

JidoshaLightImage* img: See description of method jidoshaLight_ANPR_multi_fromImage.
JidoshaLightConfig* config: See description of method jidoshaLight_ANPR_multi_fromImage.

int maxPlates: See description of method jidoshaLight_ANPR_multi_fromImage.

Return See description of method jidoshaLight_ANPR_multi_fromImage.

JidoshaLight C/C++ API (Server)

The Server API extends the Local API, allowing you to create and configure a plate-reading server for use

with remote APIs. It should be used in conjunction with the libjidoshaLight.so library.

//==
// TYPES
//==
typedef struct JidoshaLightServer JidoshaLightServer;

typedef struct JidoshaLightServerConfig

R
ev

is
io

n
 1.

0
.1

Integration Manual
JidoshaLight

49

www.pumatronix.com

{
 int port;
 int conns;
 int threads;
 int threadQueueSize;
 int queueTimeout;
} JidoshaLightServerConfig;

//==
// FUNCTIONS
//==
JL_API JidoshaLightServer* jidoshaLightServer_create(
 JidoshaLightServerConfig* serverConfig
);

JL_API int jidoshaLightServer_destroy(
 JidoshaLightServer* handler
);

Types
struct JidoshaLightServer

Description The purpose of this structure is to store the plate recognition server object.

Members None

struct JidoshaLightServerConfig

Description
The purpose of this structure is to configure the behavior of the library when acting as a
plate recognition server.

Members

int port: TCP port number used for message exchange.
int conns: number of concurrent client connections accepted by the server.

int threads: number of parallel processing threads started by the server.
int threadQueueSize: Maximum request queue size for each processing thread.

int queueTimeout: maximum waiting time of a request in the processing queue in

milliseconds (ms). The value 0 indicates that there is no timeout.

Methods
jidoshaLightServer_create

Function

Prototype

JidoshaLightServer* jidoshaLightServer_create(
 JidoshaLightServerConfig* serverConfig
);

Description
Creates a plate recognition server instance. Uses the configuration structure pointed out by
JidoshaLightServerConfig* serverConfig and returns the handler pointer of type

JidoshaLightServer.

Parameters serverConfig: pointer to struct JidoshaLightServerConfig structure with server configuration

Return Returns a pointer to the handle of type JidoshaLightServer or NULL in case of error.

jidoshaLightServer_destroy

Function

Prototype

int jidoshaLightServer_destroy(
 JidoshaLightServer* handler
);

Description Deallocates the server instance identified by its handler.

R
ev

is
io

n
 1.

0
.1

Integration Manual
JidoshaLight

50

www.pumatronix.com

Parameters handler: Pointer to server instance.

Return
JIDOSHA_LIGHT_SUCCESS return code in case of success, another code otherwise (see

Function return codes)

Java JidoshaLight API

The Java API of the JidoshaLight library has variations between the Linux and Android™ versions of the

SDK.

The Linux version is a simple wrapper over API C while the Android™ version has specialized processing

functions that better fit this development environment. Methods specific to one or the other platform are

specified in the method description.

Java JidoshaLight API (Local)

public class JidoshaLight {

 //==
 // CODES
 //==
 /* enum JidoshaLightVehicleType */
 public static final int VEHICLE_TYPE_CAR = 1;
 public static final int VEHICLE_TYPE_MOTO = 2;
 public static final int VEHICLE_TYPE_BOTH = 3;

 /* enum JidoshaLightMode */
 public static final int MODE_DISABLE = 0;
 public static final int MODE_FAST = 1;
 public static final int MODE_NORMAL = 2;
 public static final int MODE_SLOW = 3;
 public static final int MODE_ULTRA_SLOW = 4;

 /* enum JidoshaLightCountryCode */
 public static final int COUNTRY_CODE_CONESUL = 0;
 public static final int COUNTRY_CODE_SAFETYPLATES = 3;
 public static final int COUNTRY_CODE_ARGENTINA = 32;
 public static final int COUNTRY_CODE_BOLIVIA = 68,
 public static final int COUNTRY_CODE_BRAZIL = 76;
 public static final int COUNTRY_CODE_CHILE = 152;
 public static final int COUNTRY_CODE_COLOMBIA = 170;
 public static final int COUNTRY_CODE_COSTA_RICA = 188;
 public static final int COUNTRY_CODE_ECUADOR = 218;
 public static final int COUNTRY_CODE_FRANCE = 250;
 public static final int COUNTRY_CODE_ITALY = 380;
 public static final int COUNTRY_CODE_MEXICO = 484;
 public static final int COUNTRY_CODE_NETHERLANDS = 528;
 public static final int COUNTRY_CODE_PANAMA = 591;
 public static final int COUNTRY_CODE_PARAGUAY = 600;
 public static final int COUNTRY_CODE_PERU = 604;
 public static final int COUNTRY_CODE_EGYPT = 818;
 public static final int COUNTRY_CODE_USA = 840;
 public static final int COUNTRY_CODE_URUGUAY = 858;

 /* enum JidoshaLightReturnCode */

R
ev

is
io

n
 1.

0
.1

Integration Manual
JidoshaLight

51

www.pumatronix.com

 /* success */
 public static final int SUCCESS = 0;
 /* basic errors */
 public static final int ERROR_FILE_NOT_FOUND = 1;
 public static final int ERROR_INVALID_IMAGE = 2;
 public static final int ERROR_INVALID_IMAGE_TYPE = 3;
 public static final int ERROR_INVALID_PROPERTY = 4;
 public static final int ERROR_COUNTRY_NOT_SUPPORTED = 5;
 public static final int ERROR_API_CALL_NOT_SUPPORTED = 6;
 public static final int ERROR_INVALID_ROI = 7;
 public static final int ERROR_INVALID_HANDLE = 8;
 public static final int ERROR_API_CALL_HAS_NO_EFFECT = 9;
 public static final int ERROR_INVALID_IMAGE_SIZE = 10;
 /* license errors */
 public static final int ERROR_LICENSE_INVALID = 16;
 public static final int ERROR_LICENSE_EXPIRED = 17;
 public static final int ERROR_LICENSE_MAX_THREADS_EXCEEDED = 18;
 public static final int ERROR_LICENSE_UNTRUSTED_RTC = 19;
 /* others */
 public static final int ERROR_OTHER = 999;

 /* enum JidoshaLightReturnCodeNetwork */
 /* network errors */
 public static final int ERROR_SERVER_CONNECT_FAILED = 100;
 public static final int ERROR_SERVER_DISCONNECTED = 101;
 public static final int ERROR_SERVER_QUEUE_TIMEOUT = 102;
 public static final int ERROR_SERVER_QUEUE_FULL = 103;
 public static final int ERROR_SOCKET_IO_ERROR = 104;
 public static final int ERROR_SOCKET_WRITE_FAILED = 105;
 public static final int ERROR_SOCKET_READ_TIMEOUT = 106;
 public static final int ERROR_SOCKET_INVALID_RESPONSE = 107;
 public static final int ERROR_HANDLE_QUEUE_FULL = 108;
 public static final int ERROR_SERVER_CONN_LIMIT_REACHED = 213;
 public static final int ERROR_SERVER_VERSION_NOT_SUPPORTED = 214;
 public static final int ERROR_SERVER_NOT_READY = 215;

 /* Raw image pixel format */
 public static final int IMG_FMT_XRGB_8888 = 0;
 public static final int IMG_FMT_RGB_888 = 1;
 public static final int IMG_FMT_LUMA = 2;
 public static final int IMG_FMT_YUV420 = 3;

 //==
// TYPES
 //==
 public static class Config {
 public int vehicleType = VEHICLE_TYPE_BOTH;
 public int processingMode = MODE_ULTRA_SLOW;
 public int timeout = 0;
 public int countryCode = COUNTRY_CODE_BRAZIL;

 public float minProbPerChar = 0.85f;
 public int maxLowProbabilityChars = 0;
 public byte lowProbabilityChar = '?';
 public float avgPlateAngle = 0.0f;
 public float avgPlateSlant = 0.0f;

R
ev

is
io

n
 1.

0
.1

Integration Manual
JidoshaLight

52

www.pumatronix.com

 public int maxCharHeight = 60;
 public int minCharHeight = 9;
 public int maxCharWidth = 40;
 public int minCharWidth = 1;
 public int avgCharHeight = 20;
 public int avgCharWidth = 7;

 public int[] xRoi = new int[4];
 public int[] yRoi = new int[4];
 }

 public static class Recognition {
 public String plate;
 public float[] probabilities;

 public int xText;
 public int yText;
 public int widthText;
 public int heightText;

 public int[] xChar;
 public int[] yChar;
 public int[] widthChar;
 public int[] heightChar;

 public int textColor;
 public int isMotorcycle;
 public int countryCode;

 /* JidoshaLightJidoshaLightRecognitionInfo */
 public double totalTime;
 public double localizationTime;
 public double segmentationTime;
 public double classificationTime;
 public double loadDecodeTime;
 public int[] libVersion;
 public String libSHA1;
 }

 public static class LicenseInfo {
 public String serial;
 public String customer;
 public int maxThreads;
 public int maxConnections;
 public int state;
 public int ttl;
 }

 public static class Version {
 public int major;
 public int minor;
 public int release;
 }

 /* STATIC METHODS */
 /* PROCESSING [LINUX ONLY] */

R
ev

is
io

n
 1.

0
.1

Integration Manual
JidoshaLight

53

www.pumatronix.com

 public static native int ANPR_fromFile(
 String filename,
 Config config,
 Recognition rec
);

 public static native int ANPR_fromMemory(
 byte[] buffer,
 int bufferSize,
 Config config,
 Recognition rec
);

 public static native int ANPR_fromLuma(
 byte[] luma,
 int width,
 int height,
 Config config,
 Recognition rec
);

 /* PROCESSING [ANDROID ONLY] */
 public static native int ANPR_fromBitmap(
 Bitmap bitmap,
 Config config,
 Recognition rec
);

 public static int ANPR_fromUri(
 Context context,
 Uri uri,
 Config config,
 Recognition rec
);

 /* PROCESSING [LINUX AND ANDROID] */
 public static native int ANPR_fromImage(
 JidoshaLightImage img,
 Config config,
 Recognition rec
);

 public static native int ANPR_multi_fromImage(
 JidoshaLightImage img,
 Config config,
 int maxPlates,
 List<Recognition> recList
);

 //==
 // LICENSE [ANDROID]
 //==
 public static final int LICENSE_REQUEST_OK = 200;
 public static final int LICENSE_REQUEST_BAD_REQUEST = 400;
 public static final int LICENSE_REQUEST_NOT_FOUND = 404;
 public static final int LICENSE_REQUEST_UNAUTHORIZED = 401;

R
ev

is
io

n
 1.

0
.1

Integration Manual
JidoshaLight

54

www.pumatronix.com

 public static final int LICENSE_REQUEST_FORBIDDEN = 403;
 public static final int LICENSE_REQUEST_PAYMENT_REQUIRED = 402;
 public static final int LICENSE_REQUEST_INTERNAL_SERVER_ERROR = 500;
 public static final int LICENSE_REQUEST_SERVICE_UNAVAILABLE = 503;
 public static final int LICENSE_REQUEST_ORIGIN_IS_UNREACHABLE = 523;

 public static native String getAndroidFingerprint(Activity androidActivity);
 public static native int getLicenseFromServer(Activity activity, String savePath,
String user, String key);
 public static native int setLicenseFromData(Activity androidActivity, byte[] data, int
dataSize);

 /* STATUS */
 public static native int getVersion(Version version);
 public static native String getBuildSHA1();
 public static native String getBuildFlags();

 //==
 // LICENSE STATUS
 //==
 public static native int getLicenseInfo(LicenseInfo info);

 //==
 // SHARED LIBRARY LOADER
 //==
 public static void loadLibrary() {
 System.loadLibrary("jidoshaLightJava");
 }

}

Types
class JidoshaLightImage

Description It has the same features as the struct JidoshaLightImage from API C.

Public

methods

public JidoshaLightImage();

Constructs a new object of type 'JidoshaLightImage'. If the native handle allocation fails,

launches a 'RuntimeException'.
To prevent memory leaks, every 'JidoshaLightImage' object created must be explicitly

destroyed by the user using the 'destroy()' function.

public JidoshaLightImage duplicate();

Duplicates an object of type 'JidoshaLightImage' previously created and loaded in memory.

The new object needs to be destroyed by the user using the 'destroy()' function.

public int destroy();

Releases the memory allocated by the object.

public int setLazyDecode(boolean enable);

See struct JidoshaLightImage from API C.

public int loadFromFile(String filename);

See struct JidoshaLightImage from API C.

R
ev

is
io

n
 1.

0
.1

Integration Manual
JidoshaLight

55

www.pumatronix.com

public int loadFromMemory(byte[] buffer);

See struct JidoshaLightImage from API C.

public int loadFromRawImgFmt(byte[] buffer, int width, int height, int
stride, int fmt);

See struct JidoshaLightImage from API C.

class JidoshaLight.Config

Description It has the same features as the struct JidoshaLightConfig from API C.

Members

int vehicleType: indicates the type of plate that the OCR should look for. Possible values for
this field are:

• JidoshaLight.VEHICLE_TYPE_CAR: ver JIDOSHA_LIGHT_VEHICLE_TYPE_CAR.

• JidoshaLight.VEHICLE_TYPE_MOTO: ver JIDOSHA_LIGHT_VEHICLE_TYPE_MOTO.

• JidoshaLight.VEHICLE_TYPE_BOTH: ver JIDOSHA_LIGHT_VEHICLE_TYPE_BOTH.

int processingMode: indicates the processing strategy adopted by the recognition algorithm.
Possible values for this field are:

• JidoshaLight.MODE_DISABLE: ver JIDOSHA_LIGHT_MODE_DISABLE.

• JidoshaLight.MODE_FAST: ver JIDOSHA_LIGHT_MODE_FAST.

• JidoshaLight.MODE_NORMAL: ver JIDOSHA_LIGHT_MODE_NORMAL.

• JidoshaLight.MODE_SLOW: ver JIDOSHA_LIGHT_MODE_SLOW.

• JidoshaLight.MODE_ULTRA_SLOW: ver JIDOSHA_LIGHT_MODE_ULTRA_SLOW.

int timeout: see API C.
int countryCode: see API C.

float minProbPerChar: see API C.

int maxLowProbabilityChars: see API C.
byte lowProbabilityChar: see API C.

float avgPlateAngle: see API C.
float avgPlateSlant: see API C.

int maxCharHeight: see API C.

int minCharHeight: see API C.
int maxCharWidth: see API C.

int minCharWidth: see API C.
int avgCharHeight: see API C.

int avgCharWidth: see API C.
int xRoi[] and int yRoi []: x and y coordinates of the four points of the region of interest of

the image (ROI - Region Of Interest). See API C for more information.

class JidoshaLight.Recognition

Description
Concatenates the features of the struct JidoshaLightRecognition and struct
JidoshaLightRecognitionInfo types from API C.

Members

String plate: string containing the characters of the recognized plate or empty if the plate
was not found.

float probabilities[]: see API C.
int frameId: see API C.

int xText and int yText: see API C.

int widthText: see API C.
int heightText: see API C.

int xChar[] and int yChar[]: see API C.
int widthChar[]: see API C.

int heightChar[]: see API C.

int textColor: see API C.

R
ev

is
io

n
 1.

0
.1

Integration Manual
JidoshaLight

56

www.pumatronix.com

int isMotorcycle: see API C.

double totalTime: see API C.
double localizationTime: see API C.

double segmentationTime: see API C.
double classificationTime: see API C.

double loadDecodeTime: see API C.
int libVersion[]: see API C.

String libSHA1[]: see API C.

class JidoshaLight.LicenseInfo

Description Type used by the getLicenseInfo function to return information about the library license.

Members

Serial string: serial number of the license in decimal

String customer: name of the customer who purchased the license
int maxThreads: maximum number of processing threads enabled

int maxConnections: maximum number of parallel connections enabled
int state: license status (see Function return codes)

int ttl: time-to-live in hours for RTC type licenses. This field has the value -1 if the license is

not expired

class JidoshaLight.Version

Description Type used by the getVersion function to return the library version.

Members
int major: Major value of the version.
int minor: Minor value of the version.

int release: Value of the release of the version.

Methods
JidoshaLight.ANPR_fromImage [LINUX e ANDROID]

Function

Prototype

 public static native int ANPR_fromImage(
 JidoshaLightImage img,
 Config config,
 Recognition rec
);

Description It has the same behavior as the jidoshaLight_ANPR_fromImage function of API C.

Parameters

img: object of type JidoshaLightImage containing the image to be recognized.

config: object of type JidoshaLight.Config containing the settings for the library. Passing 'null'

in this parameter implies using the default library settings.
rec: object of type JidoshaLight.Recognition where the reading result will be stored.

Return
JidoshaLight.SUCCESS return code in case of success, another code otherwise (see Function
return codes).

JidoshaLight.ANPR_multi_fromImage [LINUX and ANDROID]

Function

Prototype

 public static native int ANPR_multi_fromImage(
 JidoshaLightImage img,
 Config config,
 int maxPlates,
 List<Recognition> recList
);

Description It has the same behavior as the jidoshaLight_ANPR_multi_fromImage function of API C.

Parameters img: object of type JidoshaLightImage containing the image to be recognized.

R
ev

is
io

n
 1.

0
.1

Integration Manual
JidoshaLight

57

www.pumatronix.com

config: object of type JidoshaLight.Config containing the settings for the library. Passing 'null'

in this parameter implies using the default library settings.
maxPlates: maximum number of plates to be recognized in the image (1 to 8)

recList: list of objects of type JidoshaLight.Recognition where the reading results will be
stored. It has a size equal to maxPlates if the function returns successfully.

Return
JidoshaLight.SUCCESS return code in case of success, another code otherwise (see Function
return codes).

JidoshaLight.ANPR_fromFile [LINUX]

Function

Prototype

 public static native int ANPR_fromFile(
 String filename,
 Config config,
 Recognition rec
);

Description It has the same behavior as the jidoshaLight_ANPR_fromFile function of API C.

Parameters

filename: string containing the path to the image file to be recognized.

config: object of type JidoshaLight.Config containing the settings for the library. Passing 'null'
in this parameter implies using the default library settings.

rec: object of type JidoshaLight.Recognition where the reading result will be stored.

Return
JidoshaLight.SUCCESS return code in case of success, another code otherwise (see Function
return codes).

JidoshaLight.ANPR_fromMemory [LINUX]

Function
Prototype

 public static native int ANPR_fromMemory(
 byte[] buffer,
 int bufferSize,
 Config config,
 Recognition rec
);

Description It has the same behavior as the jidoshaLight_ANPR_fromMemory function of API C.

Parameters

buffer: array of bytes that contain the image.

int bufferSize: size of the byte array.
config: object of type JidoshaLight.Config containing the settings for the library. A 'null' object

in this parameter implies using the library's default settings.
rec: object of type JidoshaLight.Recognition where the reading result will be stored.

Return
JidoshaLight.SUCCESS return code in case of success, another code otherwise (see Function
return codes).

JidoshaLight.ANPR_fromLuma [LINUX]

Function

Prototype

 public static native int ANPR_fromLuma(
 byte[] luma,
 int width,
 int height,
 Config config,
 Recognition rec
);

Description It has the same behavior as the jidoshaLight_ANPR_fromLuma function of API C.

Parameters
luma: array of bytes containing the image in 8-bit raw grayscale format.

width: image width.

R
ev

is
io

n
 1.

0
.1

Integration Manual
JidoshaLight

58

www.pumatronix.com

height: altura da imagem.

config: object of type JidoshaLight.Config containing the settings for the library. A 'null' object
in this parameter implies using the library's default settings.

rec: object of type JidoshaLight.Recognition where the reading result will be stored.

Return
JidoshaLight.SUCCESS return code in case of success, another code otherwise (see Function

return codes).

JidoshaLight.ANPR_fromBitmap [ANDROID]

Function

Prototype

public static native int ANPR_fromBitmap (
 Bitmap bitmap,
 Config config,
 Recognition rec
);

Description

Recognises a plate from the 'bitmap' object using the settings in 'config'. The recognition

result is returned in 'rec'. If an error occurs in the recognition process, the 'rec' object will
contain an empty string as a plate and a value other than 'JidoshaLight.SUCCESS' will be

returned by the function. Possible return values are defined in the 'JidoshaLight' class and

contain the prefix 'ERROR_'.

Parameters

bitmap: object of type 'android.graphics.Bitmap' containing the image to be recognized in the

format 'ARGB8888'.
config: object of type JidoshaLight.Config containing the settings for the library. A 'null' object

in this parameter implies using the library's default settings.
rec: object of type JidoshaLight.Recognition where the reading result will be stored.

Return
JidoshaLight.SUCCESS return code in case of success, another code otherwise (see Function

return codes)

JidoshaLight.ANPR_fromUri [ANDROID]

Function

Prototype

 public static int ANPR_fromUri(
 Context context,
 Uri uri,
 Config config,
 Recognition rec
);

Description

Recognises a plate from the 'Uri' of an image file. Internally this method calls the function

ANPR_fromBitmap. The recognition result is returned in 'rec'. If an error occurs in the
recognition process, the 'rec' object will contain an empty string as a plate and a value other

than 'JidoshaLight.SUCCESS' will be returned by the function. Possible return values are
defined in the 'JidoshaLight' class and contain the prefix 'ERROR_'.

Parameters

context: object of type 'android.content.Context' containing the context of the Activity.
uri: object of type 'android.net.Uri' containing the 'uri' of the image to be recognized.

config: object of type JidoshaLight.Config containing the settings for the library. A 'null' object

in this parameter implies using the library's default settings.
rec: object of type JidoshaLight.Recognition where the reading result will be stored.

Return
JidoshaLight.SUCCESS return code in case of success, another code otherwise (see Function
return codes)

JidoshaLight.getAndroidFingerprint [ANDROID]

Function
Prototype

static native String getAndroidFingerprint(Activity androidActivity);

Description Returns the unique identifier generated by the library installation.

R
ev

is
io

n
 1.

0
.1

Integration Manual
JidoshaLight

59

www.pumatronix.com

Parameters
androidActivity: object of type 'android.app.Activity' containing the reference to the main

Activity of the application.

Return
String containing the unique facility identifier required for license file generation. This string

must not be changed.

JidoshaLight.getLicenseFromServer [ANDROID]

Function

Prototype

static native int getLicenseFromServer(Activity activity, String savePath,
String user, String key);

Description Requires a license file from the Pumatronix's license server.

Parameters

activity: object of type 'android.app.Activity' containing the reference to the main Activity of
the application.

savePath: path where the received license file should be saved in case of success.
user: user to be used in the request or 'null' otherwise.

key: key to be used in the request or 'null' otherwise.

Return

• JidoshaLight.LICENSE_REQUEST_OK

• JidoshaLight.LICENSE_REQUEST_BAD_REQUEST

• JidoshaLight.LICENSE_REQUEST_NOT_FOUND

• JidoshaLight.LICENSE_REQUEST_UNAUTHORIZED

• JidoshaLight.LICENSE_REQUEST_FORBIDDEN

• JidoshaLight.LICENSE_REQUEST_PAYMENT_REQUIRED

• JidoshaLight.LICENSE_REQUEST_INTERNAL_SERVER_ERROR

• JidoshaLight.LICENSE_REQUEST_SERVICE_UNAVAILABLE

• JidoshaLight.LICENSE_REQUEST_ORIGIN_IS_UNREACHABLE

See sample Android for more information.

JidoshaLight.setLicenseFromData [ANDROID]

Function

Prototype

static native int setLicenseFromData(Activity androidActivity, byte[]
data, int dataSize);

Description
This method is used to configure the library license file from the contents of the 'byte[] data'
buffer.

Parameters

androidActivity: object of type 'android.app.Activity' containing the reference to the main

Activity of the application.

data: buffer with the contents of the license file.
dataSize: license file size - 'data.len'

Return
JidoshaLight.SUCCESS return code in case of success, another code otherwise (see Function
return codes)

JidoshaLight.getVersion

Function
Prototype

 public static native int getVersion(Version version);

Description Returns the version of the library in major.minor.release format.

Parameters version: object of type JidoshaLight.Version with version number

Return Always returns JidoshaLight.SUCCESS.

R
ev

is
io

n
 1.

0
.1

Integration Manual
JidoshaLight

60

www.pumatronix.com

JidoshaLight.getBuildSHA1

Function
Prototype

String getBuildSHA1();

Description It has the same behavior as the jidoshaLight_getBuildSHA1 function of API C.

Parameters None

Return Returns a String containing the value of the build SHA1.

JidoshaLight.getBuildFlags

Function

Prototype
String getBuildFlags();

Description It has the same behavior as the JidoshaLight_getBuildFlags function of API C.

Parameters None

Return Returns a String containing the build flags of the library.

JidoshaLight.getLicenseInfo

Function

Prototype
 public static native int getLicenseInfo(LicenseInfo info);

Description Function used to read the license information used by the JidoshaLight library.

Parameters info: object of type JidoshaLight.LicenseInfo

Return Returns JIDOSHA_LIGHT_SUCCESS on success.

Function return codes

Codes returned by JidoshaLight library functions are defined as 'public static final int' attributes within the

JidoshaLight class. The codes returned in the Linux and ANDROID versions of the SDK are:

• JidoshaLight.ERROR_FILE_NOT_FOUND: returned by the functions 'ANPR_fromFile' and
'ANPR_fromUri' when the specified file path does not exist.

• JidoshaLight.ERROR_INVALID_IMAGE: returned by the functions 'ANPR'. Occurs when the past
image is corrupted.

• JidoshaLight.ERROR_INVALID_IMAGE_TYPE: returned by the functions 'ANPR'. Occurs when
attempting to process an image of unsupported format. This error code is not returned by the
Android version of the API.

• JidoshaLight.ERROR_INVALID_PROPERTY: returned by all functions that have arguments. Occurs
when the argument is invalid.

• JidoshaLight.ERROR_COUNTRY_NOT_SUPPORTED: returned by the 'ANPR' functions when the
country code provided in the configuration structure is not supported by the library.

• JidoshaLight.ERROR_API_CALL_NOT_SUPPORTED: returned when an API function is not available
for a given platform.

• JidoshaLight.ERROR_INVALID_ROI: returned when an invalid region of interest is provided. See the
description of the 'struct JidoshaLightConfig' for more information.

• JidoshaLight.ERROR_INVALID_HANDLE: returned when the handle passed to the function was not
initialized correctly.

• JidoshaLight.ERROR_API_CALL_HAS_NO_EFFECT: Returned when an API function had no effect
when executed. It can occur when there is precedence between calls.

R
ev

is
io

n
 1.

0
.1

Integration Manual
JidoshaLight

61

www.pumatronix.com

• JidoshaLight.ERROR_LICENSE_INVALID: returned by the functions 'ANPR' when the license
provided is not valid (for licenses of the hardkey type, it means that it is not connected or has
problems). Contact Pumatronix Equipamentos Eletrônicos for more information.

• JidoshaLight.ERROR_LICENSE_EXPIRED: returned by the functions 'ANPR' when the license usage
period expired. This type of error only happens for demo type licenses. Contact Pumatronix
Equipamentos Eletrônicos for more information.

• JidoshaLight.ERROR_LICENSE_MAX_THREADS_EXCEEDED: returned by the 'ANPR' functions when
the maximum number of competing threads exceeds that allowed by the license.

• JidoshaLight.ERROR_LICENSE_UNTRUSTED_RTC: returned by the functions 'ANPR' when a license
with use-by date does not have a reliable time/date reference available.

• JidoshaLight.ERROR_OTHER: Returned when an unexpected error occurs. Contact Pumatronix
Equipamentos Eletrônicos for support.

JidoshaLight Java API (Asynchronous Remote)

Note: All functions of the Asynchronous Remote API are available for Android and
Linux.

package br.gaussian.jidoshalight;

public class JidoshaLightRemote {

 //==
// TYPES
 //==
 public static class Config {
 public int queueSize;
 public String ip;
 public int port;
 }

 public static class ServerInfo {
 public JidoshaLight.LicenseInfo license;
 public JidoshaLight.Version version;
 }

 //==
 // Callback interface
 //==
 public interface CallBacks {
 void on_lpr_result_cb(JidoshaLight.Recognition rec, int code, byte[] buffer);
 }

 //==
 // FUNCTION CALLS
 //==
 public static native long create_handle(Config config, CallBacks callbacks);
 public static native int destroy_handle(long handle);
 public static native int connect(long handle);
 public static native int connect_info(long handle, ServerInfo info);
 public static native int get_localqueue_size(long handle);
 public static native int ANPR_fromMemory (
 long handle,
 byte[] buffer,

R
ev

is
io

n
 1.

0
.1

Integration Manual
JidoshaLight

62

www.pumatronix.com

 JidoshaLight.Config config
);
 public static native int ANPR_fromRawImgFmt (
 long handle,
 byte[] buffer,
 int width,
 int height,
 int stride,
 int fmt,
 JidoshaLight.Config config
);

 //==
 // LIBRARY STATUS
 //==
 public static class Version {
 public int major;
 public int minor;
 public int release;
 }

 public static native int getVersion(Version version);
 public static native String getBuildSHA1();
 public static native String getBuildFlags();

}

Types
class JidoshaLightRemote.Config

Description The purpose of this structure is to store the client object of a plate recognition server.

Members

queueSize: maximum size of pending requests for the handle.

ip: string containing the IP address of the server.
port: integer containing the TCP port of the server.

JidoshaLightRemote.CallBacks interface

Description Interface that defines the format of the callback for receiving events from the server.

Members

on_lpr_result_cb(JidoshaLight.Recognition rec, int code, byte[] buffer)

• rec: object containing the result of the recognition

• code: requisition return code

• buffer: buffer with the image used in the recognition

class JidoshaLightRemote.ServerInfo

Description Struct used to store license and version information of a JidoshaLight server.

Members
JidoshaLight.LicenseInfo license: information about the license used by the server

JidoshaLight.Version version: server library version

Methods
JidoshaLightRemote.create_handle

Function

Prototype
long create_handle (Config config, CallBacks callbacks);

R
ev

is
io

n
 1.

0
.1

Integration Manual
JidoshaLight

63

www.pumatronix.com

Description
Creates the handle of an assicron client for connection to a plate recognition server. A call to
destroy_handle must be made to release the allocated resources.

Parameters
A 'JidoshaLightRemote.Config' object containing the server configuration parameters and an

object that implements the 'JidoshaLightRemote.CallBacks' interface.

Return If successful, returns the memory address of the created handle. Otherwise, returns '0'.

JidoshaLightRemote.destroy_handle

Function

Prototype
int destroy_handle (long handle);

Description

Releases the resources allocated to the handle. To prevent an already released handle from

being improperly reused, it is recommended that after calling this function, assign '0' to the
handle value, i.e. mHandle = 0;.

Parameters A 'long' containing the memory address of a valid 'JidoshaLightRemote' handle.

Return JidoshaLight.SUCCESS in case of success.

JidoshaLightRemote.connect

Function

Prototype
int connect (long handle);

Description Establishes the session with the plate recognition server for a given handle.

Parameters long handle: long containing the memory address of a valid JidoshaLightRemote handle.

Return JidoshaLight.SUCCESS on success, otherwise see error codes.

JidoshaLightRemote.connect_info

Function
Prototype

int connect_info(long handle, ServerInfo info);

Description
It has the same functionality as the connect function but receives an additional parameter to
receive information about the license and the server version.

Parameters
long handle: long containing the memory address of a valid JidoshaLightRemote handle.

ServerInfo* info: Object of type JidoshaLightRemote.ServerInfo

Return JidoshaLight.SUCCESS on success, otherwise see error codes.

JidoshaLightRemote.get_localqueue_size

Function

Prototype
int get_localqueue_size (long handle);

Description Returns the queue size of pending requests on the client side for a given handle.

Parameters A 'long' containing the memory address of a valid JidoshaLightRemote handle.

Return Returns the number of pending requisitions in the local (client) queue.

JidoshaLightRemote.ANPR_fromMemory

Function

Prototype

int ANPR_fromMemory (
 long handle,
 byte[] buffer,
 JidoshaLight.Config config
);

R
ev

is
io

n
 1.

0
.1

Integration Manual
JidoshaLight

64

www.pumatronix.com

Description Remote version of the 'JidoshaLight.ANPR_fromMemory' call.

Parameters

handle: long containing the memory address of a valid JidoshaLightRemote handle.

buffer: array of bytes containing the image to be recognized in JPEG, PNG or bmp format.

config: object of type JidoshaLight.Config containing the settings for the library. A 'null' object
in this parameter implies using the library's default settings.

Return JidoshaLight.SUCCESS on success, otherwise see error codes.

JidoshaLightRemote.ANPR_fromRawImgFmt

Function
Prototype

int ANPR_fromRawImgFmt (
 long handle,
 byte[] buffer,
 int width,
 int height,
 int stride,
 int fmt,
 JidoshaLight.Config config
);

Description Sends a plate recognition request from an image in RAW format.

Parameters

handle: long containing the memory address of a valid JidoshaLightRemote handle.
buffer: array of bytes containing the image to be recognized in any of the supported raw

formats (see definitions in class 'JidoshaLight').

width: image width.
height: image height

stride: number of bytes per image line
fmt: image format (see definitions in class 'JidoshaLight').

config: object of type JidoshaLight.Config containing the settings for the library. A 'null' object
in this parameter implies using the library's default settings.

Return JidoshaLight.SUCCESS on success, otherwise see error codes.

JidoshaLightRemote.getVersion

Function
Prototype

 public static native int getVersion(Version version);

Description Returns the version of the library in major.minor.release format.

Parameters version: object of type 'Version' with version number

Return Always returns 'JidoshaLight.SUCCESS'.

JidoshaLightRemote.getBuildSHA1

Function

Prototype
String getBuildSHA1();

Description It has the same behavior as the jidoshaLight_getBuildSHA1 function of API C.

Parameters None

Return Returns a String containing the value of the build SHA1.

R
ev

is
io

n
 1.

0
.1

Integration Manual
JidoshaLight

65

www.pumatronix.com

JidoshaLightRemote.getBuildFlags

Function
Prototype

String getBuildFlags();

Description It has the same behavior as the JidoshaLight_getBuildFlags function of API C.

Parameters None

Return Returns a String containing the build flags of the library.

JidoshaLightRemote.getBuildFlags

Function

Prototype
String getBuildFlags();

Description It has the same behavior as the JidoshaLight_getBuildFlags function of API C.

Parameters None

Return Returns a String containing the build flags of the library.

Java JidoshaLight API (Server)

Note: All functions of the Server API are available for Android and Linux.

package br.gaussian.jidoshalight;

public class JidoshaLightServer {

 //==
// TYPES
 //==
 public static class Config {
 public int port = 51000;
 public int conns = 1;
 public int threads = 8;
 public int threadQueueSize = 1000;
 public int queueTimeout = 0;
 }

 //==
 // FUNCTION CALLS
 //==
 public static native long create_handle(Config config);
 public static native int destroy_handle(long handle);

 //==
 // LIBRARY STATUS
 //==
 public static class Version {
 public int major;
 public int minor;
 public int release;
 }

R
ev

is
io

n
 1.

0
.1

Integration Manual
JidoshaLight

66

www.pumatronix.com

 public static native int getVersion(Version version);
 public static native String getBuildSHA1();
 public static native String getBuildFlags();

}

Types
class JidoshaLightServer.Config

Description Configuration structure for a plate reading server.

Members

port: server connection port.

conns: maximum number of simultaneous connections the server can accept (maximum
value limited by license)

threads: maximum number of processing threads that the server can use (maximum value
limited by the license). Threads are shared between connections.

threadQueueSize: Maximum size of the processing queue for each thread.

queueTimeout: Maximum time a request can wait in the processing queue.

Methods
JidoshaLightServer.create_handle

Function
Prototype

long create_handle (Config config);

Description
Creates a handle for the plate recognition server and initializes it. A call to 'destroy_handle'
must be made to release the allocated resources.

Parameters A 'JidoshaLightServer.Config' object containing the server configuration parameters.

Return If successful, returns the memory address of the created handle. Otherwise, returns '0'.

JidoshaLightServer.destroy_handle

Function
Prototype

void destroy_handle (long handle);

Description

Releases the resources allocated to the handle and stops the server. To prevent an already
released handle from being improperly reused, it is recommended that after calling this
function, assign '0' to the handle value, i.e. mHandle = 0;.

Parameters A 'long' containing the memory address of a valid JidoshaLightServer handle.

Return '0' if the handle cannot be created. Otherwise, it returns non-zero.

JidoshaLightServer.getVersion

Function

Prototype
 public static native int getVersion(Version version);

Description Returns the version of the library in major.minor.release format.

Parameters version: object of type 'Version' with version number

Return Always returns 'JidoshaLight.SUCCESS'.

JidoshaLightServer.getBuildSHA1

Function

Prototype
String getBuildSHA1();

Description It has the same behavior as the jidoshaLight_getBuildSHA1 function of API C.

R
ev

is
io

n
 1.

0
.1

Integration Manual
JidoshaLight

67

www.pumatronix.com

Parameters None

Return Returns a String containing the value of the build SHA1.

JidoshaLightServer.getBuildFlags

Function

Prototype
String getBuildFlags();

Description It has the same behavior as the JidoshaLight_getBuildFlags function of API C.

Parameters None

Return Returns a String containing the build flags of the library.

Java JidoshaLight API (IO/Mjpeg)

This API provides a video receiver in MJPEG (Motion JPEG) format. This video format is widely used by IP

cameras.

Note: All IO/Mjpeg API functions are available for Android and Linux.

package br.gaussian.io;

public class Mjpeg {

 //==
 // Error Codes
 //==
 public static final int JL_FRAME_QUEUE_FULL = 211;
 public static final int JL_LAST_FRAME_UNAVAILABLE = 212;
 public static final int JL_MJPEG_HTTP_HEADER_OVERFLOW = 1001;
 public static final int JL_MJPEG_HTTP_RESPONSE_NOT_OK = 1002;
 public static final int JL_MJPEG_HTTP_CONTENT_TYPE_ERROR = 1003;
 public static final int JL_MJPEG_HTTP_CONTENT_LENGTH_ERROR = 1004;
 public static final int JL_MJPEG_HTTP_FRAME_BOUNDARY_NOT_FOUND = 1005;
 public static final int JL_MJPEG_CONNECTION_CLOSED = 1006;
 public static final int JL_MJPEG_CONNECT_FAILED = 1007;

 //==
 // Config interface
 //==
 public static class Config {
 public String url;
 public int timeout;
 public int bufferSize;
 }

 //==
 // Callback interface
 //==
 public interface Callbacks {
 void frame_cb(byte[] frame);
 void error_cb(int code);
 }

R
ev

is
io

n
 1.

0
.1

Integration Manual
JidoshaLight

68

www.pumatronix.com

 public static native long create_handle(Callbacks callbacks, Config config);
 public static native void destroy_handle(long handle);
 public static native int connect(long handle);
 public static native byte[] get_frame(long handle);

}

Types
class Mjpeg.Config

Description Configuration structure for a Mjpeg flow.

Members

url: String containing the URL of the Mjpeg stream in http://<IP>[:PORT]/[PATH] format.

timeout: maximum interval between frames in milliseconds. Delays greater than 'timeout' are

considered as connection loss. (Recommended values: 1000 to 5000).
bufferSize: maximum number of frames that can be queued. This parameter should be

greater than 0 and preferably equal to 1. Values greater than 1 should be considered for

cases where the callback 'frame_cb' may take longer than the flow framerate.

interface Mjpeg.Callbacks

Description

Interface that defines the callbacks generated by the Mjpeg flow.

Note 1: the execution of the callback cannot take long (see parameter
'bufferSize').

Note 2: Under no circumstances can one call 'destroy_handle(long
handle)' within a callback.

Members

void frame_cb(byte[] frame): callback whenever a new frame is available. The frame comes
in JPEG format.

void error_cb(int code): callback whenever an error occurs in the Mjpeg flow (see definition
of errors below). Whenever there is a disconnect error, the flow will attempt to reestablish

connectivity automatically. To stop the process, it is enough for the user to destroy the
handle.

Methods
Mjpeg.create_handle

Function

Prototype

long create_handle (
 Callbacks callbacks,
 Config config
);

Description
Creates a handle for use in Mjpeg class functions. A call to 'destroy_handle' must be made to

release the allocated resources.

Parameters
An object that implements the 'Mjpeg.Callbacks interface' and a 'Mjpeg.Config' object

containing the flow configuration parameters.

Return If successful, returns the memory address of the created handle. Otherwise, returns '0'.

Mjpeg.destroy_handle

Function
Prototype

void destroy_handle (long handle);

R
ev

is
io

n
 1.

0
.1

Integration Manual
JidoshaLight

69

www.pumatronix.com

Description

Releases the resources allocated to the handle. To prevent an already released handle from

being improperly reused, it is recommended that after calling this function, '0' is assigned to
the handle value, i.e. mHandle = 0;.

Parameters A 'long' containing the memory address of a valid Mjpeg handle.

Return '0' if the handle cannot be created. Otherwise, it returns non-zero.

Mjpeg.connect

Function
Prototype

void connect (long handle);

Description Attempts to establish a connection to the URL defined in the creation of the Mjpeg handle.

Parameters A 'long' containing the memory address of a valid Mjpeg handle.

Return

'JidoshaLight.SUCCESS' in case of success.
'Mjpeg.JL_MJPEG_CONNECT_FAILED' if the connection cannot be established immediately. In

this case, the handle will not try to reconnect automatically, leaving it up to the user to call
'connect' again in time.

Mjpeg.get_frame

Function
Prototype

byte[] get_frame(long handle)

Description
Returns the most recent frame of the Mjpeg receive queue. Consecutive calls to this function
can return the same frame if no new frames have been received in the range.

Parameters A 'long' containing the memory address of a valid Mjpeg handle.

Return

A byte array containing the last frame received in JPEG format. If no frame has been received

by the time of the call, the function returns an array of size 0 'byteArray.length == 0' and the
callback 'error_cb' is called with code 'JL_LAST_FRAME_UNAVAILABLE'.

Migration Guide - API 1 C/C++ JIDOSHA

The process of migrating a PC application that uses API 1 from the JIDOSHA library to an application

embedded with the JidoshaLight library is simple and fast:

1) the `lePlaca` function must be replaced by the 'jidoshaLight_ANPR_fromFile' function;
2) the 'struct JidoshaConfig' must be replaced by the 'struct JidoshaLightConfig';
3) the 'struct Recognition' by the 'struct JidoshaLightRecognition'.

The user must pay attention to the new JidoshaLight configuration fields, which must necessarily be filled

with the correct values.

The following example shows how to achieve the same behavior as JIDOSHA with JidoshaLight:

• JIDOSHA:

#include <stdio.h>
#include "jidoshaCore.h"

int main(int argc, char* argv[])
{
Rec recognition;
 JidoshaConfig config;
 config.typePlate = JIDOSHA_TYPE_PLATE_BOTH;
 config.timeout = 1000;
 readPlate(argv[1], &config, &rec);

R
ev

is
io

n
 1.

0
.1

Integration Manual
JidoshaLight

70

www.pumatronix.com

 printf("placa: %s\n", rec.placa);
 return 0;
}

• JidoshaLight

#include <stdio.h>
#include "anpr/api/jidosha_light_api.h"

int main(int argc, char* argv[])
{
 JidoshaLightRecognition rec;
 JidoshaLight.Config config = {0};
 config.vehicleType = JIDOSHA_LIGHT_VEHICLE_TYPE_BOTH;
 config.processingMode = JIDOSHA_LIGHT_MODE_ULTRA_SLOW;
 config.timeout = 1000;
 config.countryCode JIDOSHA_LIGHT_COUNTRY_CODE_BRAZIL
 config.maxLowProbabilityChars = 0;
 config.minProbPerChar = 0.85;
 config.lowProbabilityChar = '?';
 jidoshaLight_ANPR_fromFile(argv[1], &config, &rec);
 printf("placa: %s\n", rec.plate);
 return 0;
}

Remarks:

• The 'struct JidoshaLightConfig config' is initialized with zero '{0}', ensuring that the fields 'int xRoi[4]'
and 'int yRoi[4]' are zero and disabling the use of ROI.

• The processing mode 'JIDOSHA_LIGHT_MODE_ULTRA_SLOW' is the one that most closely
resembles the processing strategy used by the JIDOSHA library.

The SDK accompanies a more detailed application example.

7. JIDOSHA User APIs

For ease of use and migration to the JidoshaLight library, the JIDOSHA APIs are also made available through

the 'libjidoshaCore.so' and 'jidoshaCore.dll libraries'. It is possible to exchange the JIDOSHA library for these

new files while maintaining the same behavior (with a few caveats; see Special legacy API Builds. Files with

the JIDOSHA interface are found inside the jidoshapc folder of the Windows or Linux SDK.

JIDOSHA's native Application Programming Interface (API) is written in C language, which allows its use

from any language. The SDK also includes wrapper libraries to simplify library usage from .NET (C# and

VB.NET), Java, and Delphi. These wrappers simply encapsulate calls to library functions, making any

necessary conversion of parameters and results.

The entire API C is available through a single header file, jidoshaCore.h, the contents of which are presented

below. A more detailed description is also presented.

The library can be used in two ways: via API 1 or API 2:

API 1, which was JIDOSHA's first API, is primarily motivated by ease of use. It is possible to read plates

through a single function call (`lePlaca` or 'lePlacaFromMemory', in the case of C language).

R
ev

is
io

n
 1.

0
.1

Integration Manual
JidoshaLight

71

www.pumatronix.com

API 2 was created to provide greater flexibility in library configuration and image loading. For example, it

is possible to set the minimum number of characters that must be read with good reliability for the plate to

be considered valid. You can add new configuration parameters to API 2 without affecting existing library

users (i.e., these users can update the JIDOSHA DLL/.so to a newer version, without having to recompile).

In addition, API 2 allows the use of RAW type images, both grayscale and RGB/BGR. Compatibility with

other formats can be added as needed.

We recommend API 1 for those who need to integrate JIDOSHA into their application as soon as possible,

and API 2 for those who would like more control over the operation of the library.

jidoshaCore.h
#define JIDOSHA_TYPE_PLATE_CAR 1 /* recognize only non-run plates (other vehicles) */
#define JIDOSHA_TYPE_PLATE_MOTORCYCLE 2 /* only recognizes motorcycle plates */
#define JIDOSHA_TYPE_PLATE_BOTH 3 /* recognize any plate */

enum jidoshaError {
 JIDOSHA_SUCCESS = 0,
 JIDOSHA_ERROR_HARDKEY_NOT_FOUND,
 JIDOSHA_ERROR_HARDKEY_NOT_AUTHORIZED,
 JIDOSHA_ERROR_FILE_NOT_FOUND,
 JIDOSHA_ERROR_INVALID_IMAGE,
 JIDOSHA_ERROR_INVALID_IMAGE_TYPE,
 JIDOSHA_ERROR_INVALID_PROPERTY,
 JIDOSHA_ERROR_COUNTRY_NOT_SUPPORTED,
 JIDOSHA_ERROR_OTHER = 999,
};

/* OCR Parameters */
typedef struct JidoshaConfig
{
 int typePlate; /* indicates the type of plate the OCR should look for
 use JIDOSHA_TYPE_PLATE_CAR,
 JIDOSHA_TYPE_PLATE_MOTORCYCLE,
 or JIDOSHA_TYPE_PLATE_BOTH */
 int timeout; /* timeout in milliseconds */
} JidoshaConfig;

/* OCR Result */
typedef struct Recognition
{
char plate[8]; /* 7 character plate ending with 0, or empty string if plate not found */
double probabilities[7]; /* values from 0.0 to 1.0 indicating reliability of the
recognition of each character */
 int xText; /* xText and yText are the top left point */
 int yText; /* of the plate rectangle */
 int widthText; /* plate rectangle width */
int heightText; /* plate rectangle height */
 int textColor; /* text color, 0 - dark, 1 - light */
int isMotorcycle; /* 0 – non-motorcycle, 1 - motorcycle */

} Recognition;

/* API 1 **/

R
ev

is
io

n
 1.

0
.1

Integration Manual
JidoshaLight

72

www.pumatronix.com

/* Runs the OCR from a buffer containing an encoded image (JPG, BMP, etc.)
returns empty plate if the hardkey has not been found or is invalid */
int lePlacaFromMemory(const unsigned char* stream, int n, JidoshaConfig* config,
Recognition* rec);

/* Runs the OCR from a file whose name is provided
returns empty plate if the hardkey has not been found or is invalid */
int readPlate(const char* filename, JidoshaConfig* config, Recognition* rec);

/* Library version */
int getVersion(int* major, int* minor, int* release);

/* Hardkey serial number */
int getHardkeySerial(unsigned long* serial);

/* Hardkey status
 state == 0 -> Unauthorized
 state == 1 -> authorized
return == 0 -> hardkey found
return == 1 -> hardkey not found */
int getHardkeyState(int* state);

/* Demo hardkey time remaining
days==-1 and hours==-1: hardkey is not demonstration (infinite duration)
 */
int getHardkeyRemainingTime(int* days, int* hours);

/* API 2 **/

/* API Default Configuration:
 int typePlate = 3 (JIDOSHA_TYPE_PLATE_BOTH)
 int timeout = 0
int minNumChars = 7
int maxNumChars = 7
int minCharWidth = 1
int avgCharWidth = 7
int maxCharWidth = 40
 int minCharHeight = 9
 int avgCharHeight = 20
 int maxCharHeight = 60
 double minPlateAngle = -30.0
 double avgPlateAngle = 0.0
 double maxPlateAngle = 30.0
 double avgPlateSlant = 0.0
 int adjustPerspective = 0
 int autoSlope = 1
 int autoSlant = 1
 double minProbPerCharacter = 0.8
 char lowProbabilityChar = '*'
 double excellentProb = 0.95
 int ocrModel = 1
 int checkSyntax = 1
*/

/* Chained list of recognitions */

R
ev

is
io

n
 1.

0
.1

Integration Manual
JidoshaLight

73

www.pumatronix.com

typedef struct ResultList
{
 struct ResultList* next;
struct Recognition* recognition;
} ResultList;

/* Releases memory from a list of recognitions */
void jidoshaFreeResultList(ResultList* list);

typedef void JidoshaHandle; /* handle used in API2 */
typedef void JidoshaImage; /* handle for image allocated in API2 */

/* API2 handle initializes
in mulithread processing, one handle per thread must be used */
JIDOSHACORE_API JidoshaHandle* jidoshaInit();

/* Finishes a previously allocated handle */
JIDOSHACORE_API int jidoshaDestroy(JidoshaHandle* handle);

/* Writes an integer type configuration property */
JIDOSHACORE_API int jidoshaSetIntProperty(JidoshaHandle* handle, const char* name, int
value);
/* Read an integer type configuration property */
JIDOSHACORE_API int jidoshaGetIntProperty(JidoshaHandle* handle, const char* name, int*
value);

/* Writes a configuration property of type double */
JIDOSHACORE_API int jidoshaSetDoubleProperty(JidoshaHandle* handle, const char* name,
double value);
/* Read a double type configuration property */
JIDOSHACORE_API int jidoshaGetDoubleProperty(JidoshaHandle* handle, const char* name,
double* value);

/* Writes a char type configuration property */
JIDOSHACORE_API int jidoshaSetCharProperty(JidoshaHandle* handle, const char* name, char
value);
/* Read a char type configuration property */
JIDOSHACORE_API int jidoshaGetCharProperty(JidoshaHandle* handle, const char* name, char*
value);

/* Runs the OCR on a loaded image */
JIDOSHACORE_API int jidoshaFindFirst(JidoshaHandle* handle, JidoshaImage* image,
ResultList* list);

/* Runs the OCR into a loaded image to read from the second plate onwards.
The first plate should be read by jidoshaFindFirst. */
JIDOSHACORE_API int jidoshaFindNext(JidoshaHandle* handle, JidoshaImage* image, ResultList*
list);

/* Loads a jpg or bmp image from a file */
JIDOSHACORE_API int jidoshaLoadImage(const char* filename, JidoshaImage** img);

/* Loads a jpg, bmp or raw image (grayscale or RGB/BGR)
from an in-memory buffer */
JIDOSHACORE_API int jidoshaLoadImageFromMemory(const unsigned char* buf, int n, int type,
int width, int height, JidoshaImage** img);

R
ev

is
io

n
 1.

0
.1

Integration Manual
JidoshaLight

74

www.pumatronix.com

/* Releases memory from a uploaded image */
JIDOSHACORE_API int jidoshaFreeImage(JidoshaImage** img);

/* String to identify the library build */
JIDOSHACORE_API const char* jidoshaBuildInfo();

/* Number of authorized threads */
JIDOSHACORE_API int jidoshaNumThreads();

API1 JIDOSHA C/C++

Types

struct JidoshaConfig

Description
The purpose of this structure is to configure the behavior of the library in the plate
recognition call.

Members

int typePlate: indicates the type of plate that the OCR should look for, and should be one of
the following values:

• JIDOSHA_TYPE_PLATE_CAR: Only license plates will be searched, where “car”
means “non-motorcycle”, i.e., it includes cars, trucks, buses etc.

• JIDOSHA_TYPE_PLATE_MOTORCYCLE: Only motorcycle plates will be
searched.

• JIDOSHA_TYPE_PLATE_BOTH: Both motorcycle and non-motorbike plates will
be searched.

int timeout: Indicates the maximum time that plate recognition should take, in milliseconds. A

value of zero indicates that there is no timeout. A non-zero value helps keep the average
processing time low. The value should be determined based on the resolution of the image

and CPU used

struct Recognition

Description

The purpose of this structure is to store the result of the plate recognition, including: the

characters of the plate, the reliability of each character, and the coordinates of the plate in

the image.

Members

char placa[8]: 7-character plate ending with 0, or empty string if the plate was not found.

double probabilities[7]: values from 0.0 to 1.0 indicating the reliability, in the form of
probability, of the recognition of each character.

int xText and int yText: coordinates of the point on the top left of the plate, if found.
int widthText: width of the plate rectangle.

int heightText: height of the plate rectangle.

int textColor: plate text color, 0 - dark, 1 - light.
int isMotorcycle: indicates if plate is motorcycle, 0 - non-motorcycle, 1 - motorcycle.

Methods

readPlate

Function

Prototype

int readPlate(const char* filename, JidoshaConfig* config, Recognition*
rec);

Description
Recognize the plate and store it in a 'Recognition' object. The image should be passed as a

parameter in the path format from where the image is located. If no plate is found, or if

R
ev

is
io

n
 1.

0
.1

Integration Manual
JidoshaLight

75

www.pumatronix.com

hardkey is not authorized or not found, the 'Recognition' object will contain an empty string as

the plate.
The image file must be a bitmap, jpeg or png.

Parameters
filename: path to the image file.
config: pointer to the struct 'JidoshaConfig' with the configuration for the library.

rec: pointer to the 'Recognition' struct where the reading result will be stored.

Return Error code: 0 (zero) in case of success, non-zero number otherwise.

readPlateFromMemory

Function

Prototype

int readPlateFromMemory(const unsigned char* stream, int n, JidoshaConfig*
config, Recognition*rec);

Description

Recognize the plate and store it in a 'Recognition' object. The image should be passed as a

parameter in the byte array format, and the number of bytes given by the 'n' parameter. If no
plate is found, or if hardkey is not authorized or not found, the 'Recognition' object will contain

an empty string as the plate.

The image file must be a bitmap, jpeg or png.

Parameters

stream: array of bytes containing the image.

n: size of the byte array.
config: pointer to the struct 'JidoshaConfig' with the configuration for the library.

rec: pointer to the 'Recognition' struct where the reading result will be stored.

Return Error code: 0 (zero) in case of success, non-zero number otherwise.

getVersion

Function

Prototype
int getVersion(int* major, int* minor, int* release);

Description Used to check the version of the library, in major.minor.release format.

Parameters
major: pointer to variable int where the major will be written.
minor: pointer to variable int where the minor will be written.

release: pointer to the int variable where the release will be written.

Return Always returns 0 (zero).

getHardkeySerial

Function

Prototype
int getHardkeySerial(unsigned long* serial);

Description Used to verify the serial number of the hardkey.

Parameters serial: pointer to variable unsigned long where the hardkey serial number will be written.

Return Returns 0 on success, 1 if hardkey is not found.

getHardkeyState

Function
Prototype

int getHardkeyState(int* state);

Description
Used to check the state of the hardkey. If state is equal to 0, hardkey is not authorized; if
state is equal to 1, hardkey is authorized.

Parameters state: pointer to variable int the hardkey state will be written.

Return Returns 0 on success, 1 if hardkey is not found.

R
ev

is
io

n
 1.

0
.1

Integration Manual
JidoshaLight

76

www.pumatronix.com

getHardkeyRemainingTime

Function
Prototype

int getHardkeyRemainingTime(int* days, int* hours);

Description
Used to check the remaining time for demo licenses. If days and hours are equal to -1 there is

no time limit.

Parameters
days: pointer to variable int where the number of days remaining will be written.

hours: pointer to variable int where the number of hours remaining will be written.

Return Returns 0 on success, 1 if hardkey is not found.

API2 JIDOSHA C/C++

Types

struct ResultList

Description
The purpose of this structure is to store the linked list with the processing results of the
'jidoshaFindFirst' and 'jidoshaFindNext' functions.

Members
struct ResultList* next: pointer to the next node in the list. NULL if the current node is the
last.

struct Recognition* recognition: pointer to the struct that contains a plate recognition result.

typedef void JidoshaHandle

Description Type used to represent the memory allocated to the configuration.

typedef void JidoshaImage

Description Type used to represent the memory allocated to an image.

Methods

jidoshaFreeResultList

Function

Prototype
void jidoshaFreeResultList(ResultList* list);

Description Releases the memory allocated to the chained list of results.

Parameters list: pointer to a struct 'ResultList'.

Return It has no return.

jidoshaInit

Function

Prototype
JidoshaHandle* jidoshaInit();

Description
Allocates memory to the library configuration. In the case of multithreaded use, each thread
should call 'jidoshaInit' and use its own 'JidoshaHandle'.

Parameters None.

Return Returns a pointer to a 'JidoshaHandle' that will be used in subsequent function calls.

R
ev

is
io

n
 1.

0
.1

Integration Manual
JidoshaLight

77

www.pumatronix.com

jidoshaDestroy

Function
Prototype

int jidoshaDestroy(JidoshaHandle* handle);

Description Releases the memory allocated by the jidoshaInit function.

Parameters handle: pointer to a variable 'JidoshaHandle'.

Return JIDOSHA_SUCCESS.

jidoshaSetIntProperty

Function

Prototype

int jidoshaSetIntProperty(JidoshaHandle* handle, const char* name, int
value);

Description Changes the value of a variable of the int type of the configuration.

Parameters
handle: pointer to a 'JidoshaHandle'.
name: string that contains the name of the property to be changed.

value: value that should be assigned to the property.

Return
JIDOSHA_SUCCESS if the variable value is changed, JIDOSHA_ERROR_INVALID_PROPERTY if

the property does not exist or is not of type int.

jidoshaGetIntProperty

Function
Prototype

int jidoshaGetIntProperty(JidoshaHandle* handle, const char* name, int*
value);

Description Reads the value of a variable of type int from the configuration.

Parameters

handle: pointer to a 'JidoshaHandle'.

name: string that contains the name of the property to be read.
value: pointer to variable int where the property value will be written.

Return
JIDOSHA_SUCCESS if the variable value is read, JIDOSHA_ERROR_INVALID_PROPERTY if the
property does not exist or is not of type int.

jidoshaSetDoubleProperty

Function
Prototype

int jidoshaSetDoubleProperty(JidoshaHandle* handle, const char* name,
double value);

Description Changes the value of a configuration double variable.

Parameters

handle: pointer to a 'JidoshaHandle'.

name: string that contains the name of the property to be changed.

value: value that should be assigned to the property.

Return
JIDOSHA_SUCCESS if the variable value is changed, JIDOSHA_ERROR_INVALID_PROPERTY if

the PROPERTY does not exist or is not of the double type.

jidoshaGetDoubleProperty

Function

Prototype

int jidoshaGetDoubleProperty(JidoshaHandle* handle, const char* name,
double* value);

Description Reads the value of a configuration double variable.

Parameters
handle: pointer to a 'JidoshaHandle'.
name: string that contains the name of the property to be read.

value: pointer to double variable where the property value will be written.

R
ev

is
io

n
 1.

0
.1

Integration Manual
JidoshaLight

78

www.pumatronix.com

Return
JIDOSHA_SUCCESS if the variable value is read, JIDOSHA_ERROR_INVALID_PROPERTY if the

PROPERTY does not exist or is not of the double type.

jidoshaSetCharProperty

Function

Prototype

int jidoshaSetCharProperty(JidoshaHandle* handle, const char* name, char
value);

Description Changes the value of a variable of the int type of the configuration.

Parameters
handle: pointer to a 'JidoshaHandle'.
name: string that contains the name of the property to be changed.

value: value that should be assigned to the property.

Return
JIDOSHA_SUCCESS if the variable value is changed, JIDOSHA_ERROR_INVALID_PROPERTY if

the PROPERTY does not exist or is not of the char type.

jidoshaGetCharProperty

Function

Prototype

int jidoshaGetCharProperty(JidoshaHandle* handle, const char* name, char*
value);

Description Reads the value of a configuration char variable.

Parameters
handle: pointer to a 'JidoshaHandle'.
name: string that contains the name of the property to be read.

value: pointer to the char variable where the property value will be written.

Return
JIDOSHA_SUCCESS if the variable value is read, JIDOSHA_ERROR_INVALID_PROPERTY if the
PROPERTY does not exist or is not of the char type.

jidoshaFindFirst

Function
Prototype

int jidoshaFindFirst(JidoshaHandle* handle, JidoshaImage* image,
ResultList* list);

Description

Recognises the plate and stores it in a 'Recognition' object found on the first node of the
'ResultList'. The image should be loaded using the 'jidoshaLoadImage' or

'jidoshaLoadImageFromMemory' functions. If no plate is found, or if hardkey is not authorized

or not found, the 'Recognition' object will contain an empty string as the plate.
This function should only be called with an empty 'ResultList'.

Parameters
handle: pointer to a 'JidoshaHandle' that contains the library configuration.
image: pointer to a 'JidoshaImage' that contains the image to be processed.

list: pointer to a 'ResultList' where the processing result will be stored.

Return
JIDOSHA_SUCCESS if the image is processed, otherwise another value of the enum

'jidoshaError'.

jidoshaFindNext

Function

Prototype

int jidoshaFindNext(JidoshaHandle* handle, JidoshaImage* image,
ResultList* list);

Description

The purpose of this function is to allow the user to recognize multiple plates in the same

image. The function recognises the plate and stores it in a 'Recognition' object that is on the

last node of the 'ResultList'. The image should be loaded using the 'jidoshaLoadImage' or
'jidoshaLoadImageFromMemory' functions. If no plate is found, or if hardkey is not authorized

or not found, the 'Recognition' object will contain an empty string as the plate.
This function should only be called with a 'ResultList' previously processed by the

'jidoshaFindFirst' or 'jidoshaFindNext' function.

Parameters
handle: pointer to a 'JidoshaHandle' that contains the library configuration.

image: pointer to a 'JidoshaImage' that contains the image to be processed.

R
ev

is
io

n
 1.

0
.1

Integration Manual
JidoshaLight

79

www.pumatronix.com

list: pointer to a 'ResultList' where the processing result will be stored.

Return
JIDOSHA_SUCCESS if the image is processed, otherwise another value of the enum

'jidoshaError'.

jidoshaLoadImage

Function
Prototype

int jidoshaLoadImage(const char* filename, JidoshaImage** img);

Description
Loads an image from a file and saves the reference as a JidoshaImage.

The image file must be a bitmap, jpeg or png.

Parameters
filename: path to the image file.

img: pointer-to-pointer to the 'JidoshaImage' struct where the image will be stored.

Return

JIDOSHA_SUCCESS if the image is loaded correctly,

JIDOSHA_ERROR_FILE_NOT_FOUND if the file is not found or does not exist,
JIDOSHA_ERROR_INVALID_IMAGE or JIDOSHA_ERROR_INVALID_IMAGE_TYPE if there are

problems with the image load.

jidoshaLoadImageFromMemory

Function

Prototype

int jidoshaLoadImageFromMemory(const unsigned char* buf, int n, int type,
int width, int height, JidoshaImage** img);

Description
Loads an image from a byte array and saves the reference as a 'JidoshaImage'.
The image must be in some structured format (bmp, jpg, png, etc.) or raw (Grayscale 8bit,

RGB, or BGR).

Parameters

buf: array of bytes containing the image.

n: array size in bytes.
type: image type: structured types =0, GRAY8=1, RGB=2, BGR=3.

width: image width, ignored if type==0.

height: image height, ignored if type==0.
img: pointer-to-pointer to a 'JidoshaImage' where the image will be stored.

Return
JIDOSHA_SUCCESS if the image is loaded correctly, JIDOSHA_ERROR_FILE_NOT_FOUND if
the file is not found or does not exist, JIDOSHA_ERROR_INVALID_IMAGE or

JIDOSHA_ERROR_INVALID_IMAGE_TYPE if there are problems with the image load.

jidoshaFreeImage

Function

Prototype
int jidoshaFreeImage(JidoshaImage** img);

Description Releases memory allocated to store an image.

Parameters img: pointer-to-pointer for a 'JidoshaImage' that will be unallocated.

Return JIDOSHA_SUCCESS.

jidoshaBuildInfo

Function

Prototype
const char* jidoshaBuildInfo();

Description
Checks the build information of the library and is used to verify that the version being
executed is the expected one.

Parameters None.

Return Constant string that has 12 or 13 characters representing BuildInfo plus a terminator ('\0').

R
ev

is
io

n
 1.

0
.1

Integration Manual
JidoshaLight

80

www.pumatronix.com

jidoshaNumThreads

Function
Prototype

int jidoshaNumThreads();

Description Checks the number of authorized threads in hardkey.

Parameters None.

Return
Integer representing how many threads are allowed to simultaneously execute the OCR
functions of the library. Returns 1 if the hardkey is not found.

API 2 - Configuration

In this section we detail all the configuration parameters available in API 2. This is true for API C, Java,

.NET, and Python.

typePlate Parameter

Description

It serves to restrict the type of license plate that should be recognized. It is mainly interesting

to reduce processing time. In particular, when 'tipoPlaca =JIDOSHA_TYIPE_PLATE_CAR', a
faster plate location method can be used by the library. The valid values are:

Name tipoPlaca

Type int

Default value JIDOSHA_TYPE_PLATE_BOTH

Other values

• JIDOSHA_TYPE_PLATE_CAR' == 1

• JIDOSHA_TYPE_PLATE_MOTORCYCLE' == 2

• JIDOSHA_TYPE_PLATE_BOTH' == 3

timeout parameter

Description

After 'timeout' milliseconds from the start of processing an image the search of the plate will

be terminated and the best plate found will be returned. If 'timeout' is zero, there is no

timeout. It is recommended to use a non-zero 'timeout' when the application requires images
to be processed quickly (with low latency) or when the CPU load is too high.

Name timeout

Type int

Default value 0

minNumChars Parameter

Description

Indicates the minimum number of characters a plate must have. If the version in use of the

library has multiple plate syntaxes enabled (for example, multi-country plates), this parameter

is ignored and 'numAllowedBadChars' should be used instead.

Name minNumChars

Type int

Default value 7

R
ev

is
io

n
 1.

0
.1

Integration Manual
JidoshaLight

81

www.pumatronix.com

numAllowedBadChars Parameter

Description
Indicates the maximum number of missing characters a plate can have, this parameter is used
when it is desired that partially recognized plates be returned.

Name numAllowedBadChars

Type int

Default value 0

MaxNumChars Parameter

Description
Indicates the maximum number of characters a plate should have. This parameter is currently

ignored.

Name maxNumChars

Type int

Default value 7

minCharWidth Parameter

Description Minimum width a character should have, in pixels.

Name minCharWidth

Type int

Default value 1

avgCharWidth Parameter

Description Expected average width of a character, in pixels. This parameter is currently not used.

Name avgCharWidth

Type int

Default value 1

maxCharWidth Parameter

Description Maximum width a character should have, in pixels.

Name maxCharWidth

Type int

Default value 7

minCharHeight Parameter

Description Minimum height a character should have, in pixels.

Name minCharHeight

Type int

Default value 9

R
ev

is
io

n
 1.

0
.1

Integration Manual
JidoshaLight

82

www.pumatronix.com

avgCharHeight Parameter

Description

Expected average height of a character, in pixels. This parameter can be used when the plates
are too large. When 'avgCharHeight > 30', the image will be internally reduced before it is

processed. The minimum and maximum character size limits will be adjusted according to the
resizing factor.

Name avgCharHeight

Type int

Default value 20

maxCharHeight Parameter

Description Maximum height of one character, in pixels.

Name maxCharHeight

Type int

Default value 60

ocrModel Parameter

Description

Defines the OCR model to be used in character recognition. This parameter exists to allow you
to easily switch the OCR model to models from previous versions of the library, without the

need to recompile the user application or switch the library. Do not use values other than the
default, except when recommended by the Pumatronix Equipamentos Eletrônicos' support

team.

Name ocrModel

Type int

Default value 1

checkSyntax Parameter

Description

When 'checkSyntax=1' the library applies an additional processing step to verify that the

recognized characters have the expected syntax (letter or number), which reduces the
incidence of false recognitions (texts that are not plates).

Note: Even when 'checkSyntax =0', the library will never return a recognition with a syntax

different from that defined. For example, for Brazilian plates, the returned plate will always
have 3 letters followed by 4 numbers. However, a non-plate text, such as "SCHOOL", can be

confused with a plate, which would result in a recognition as "SCH0148". The syntax is
according to a Brazilian plate, although it is not a plate. Using 'checkSyntax=1' can help

discard false recognitions as in the example.

Name checkSyntax

Type int

Default value 1

minPlateAngle Parameter

Description
Minimum slope angle in degrees allowed for a plate. For more details, refer to the perspective

configuration section of the image.

Name minPlateAngle

R
ev

is
io

n
 1.

0
.1

Integration Manual
JidoshaLight

83

www.pumatronix.com

Type double

Default value -30.0

maxPlateAngle Parameter

Description
Maximum slope angle in degrees allowed for a plate. For more details, refer to the perspective
configuration section of the image.

Name maxPlateAngle

Type double

Default value 30.0

minProbPerCharacter Parameter

Description

Minimum probability (reliability) required in the recognition of each character. It is extremely

important for the proper functioning of OCR, and it is not recommended to change the default
configuration. However, in specific cases it may be interesting to adjust it.

If 'minProbPerCharacter' is smaller than the default, the number of plates that are not

recognized will reduce, but in contrast the number of plates with some wrong character may
increase.

If 'minProbPerCharacter' is greater than the default, the number of plates that are not
recognized may increase, but the number of errors will be smaller.

Name minProbPerCharacter

Type double

Default value 0.8

excellentProb Parameter

Description

This parameter exists to reduce the average processing time. If all recognized characters have

a probability greater than or equal to 'excellentProb', the recognition will be considered
excellent and returned to the user immediately, without further processing. Otherwise,

processing will continue until one of the following conditions is met: excellent recognition is
found; the timeout is reached; or there are no further processing steps to do.

Higher values of 'excellentProb' result in higher recognition rates and lower error rates

(confusion between characters), but with longer processing time.
Lower values of 'excellentProb' result in lower recognition rates and higher error rates

(confusion between characters), but with shorter processing time.

Name excellentProb

Type double

Default value 0.95

lowProbabilityChar Parameter

Description
Replacement character to be used when a plate character is recognized with probability less
than 'minProbPerCharacter'. It will take effect only if 'minNumChars' is less than

'maxNumChars'.

R
ev

is
io

n
 1.

0
.1

Integration Manual
JidoshaLight

84

www.pumatronix.com

For example, if 'lowProbabilityChar='-'' and 'minNumChars =6', the plate '"ABC1234"' will be

returned as '"A-C1234" 'if the probability of the second character is less than
'minProbPerCharacter'.

Name lowProbabilityChar

Type char

Default value '*'

country Parameter

Description

Replacement character to be used when a plate character is recognized with probability less

than 'minProbPerCharacter'. It will take effect only if 'minNumChars' is less than
'maxNumChars'.

For example, if 'lowProbabilityChar='-' and 'minNumChars =6', the plate '"ABC1234"' will be

returned as '"A-C1234" 'if the probability of the second character is less than
'minProbPerCharacter'.

Name country

Type int

Default value 76

API 2 - Image Perspective Configuration

In general, it is recommended that the installation of the camera to capture vehicular plates be done so

that the plates are aligned with the horizontal and vertical axes of the image. However, in some situations

this is not possible, and it ends up obtaining plates inclined in relation to the axes of the image, which can

impair the recognition of the plates. In these cases, the library can be informed of the perspective of the

plate. The library will then perform a perspective correction to maximize the plate recognition index.

In the case of multi-camera equipment, it is recommended to create one API 2 'handle' per camera (via the

'jidoshaInit' function) and configure the perspective parameters individually for each 'handle'.

The parameters 'avgPlateAngle', 'avgPlateSlant' and 'adjustPerspective' are used to inform the plate

perspective in the image (horizontal and vertical slope) and correct it. Horizontal slope ('avgPlateAngle')

and vertical slope ('avgPlateSlant') shall be measured on typical installation images.

In addition to the manual perspective configuration, it is also possible to enable algorithms in the library

that seek to automatically correct the perspective. See the 'autoSlope' and 'autoSlant' parameters for more

details.

R
ev

is
io

n
 1.

0
.1

Integration Manual
JidoshaLight

85

www.pumatronix.com

Figure 11- How to calculate avgPlateAngle and avgPlateSlant values

avgPlateAngle Parameter

Description

Average horizontal slope angle in degrees expected for a plate. It is used to make perspective

adjustment of the image. It will only take effect if 'adjustPerspective' is non-zero. The angle
must be measured according to the convention in the image above.

Name avgPlateAngle

Type double

Default value 0.0

avgPlateSlant Parameter

Description

Average vertical slope angle in degrees expected for a plate. It is used to make perspective

adjustment of the image. It will only take effect if 'adjustPerspective' is non-zero. The angle
must be measured according to the convention in the image above.

Name avgPlateSlant

Type double

Default value 0.0

adjustPerspective Parameter

Description

'adjustPerspective=1' enables perspective adjustment configured through 'avgPlateAngle' and

'avgPlateSlant'.
'adjustPerspective=0' disables perspective adjustment ('avgPlateAngle' and 'avgPlateSlant' are

ignored).

R
ev

is
io

n
 1.

0
.1

Integration Manual
JidoshaLight

86

www.pumatronix.com

Name adjustPerspective

Type int

Default value 0

autoSlope Parameter

Description

'autoSlope=1' enables automatic adjustment of the plate's horizontal slope. If used in

conjunction with the manual perspective adjustment ('avgPlateAngle' when 'adjustPerspective
=1'), the manual adjustment will be applied before the automatic adjustment algorithm.

'autoSlope=0' disables automatic adjustment of the plate's horizontal slope.

Name autoSlope

Type int

Default value 1

autoSlant Parameter

Description

'autoSlant=1' enables automatic adjustment of the vertical slope of the plate. If used in
conjunction with the manual perspective adjustment ('avgPlateSlant' when 'adjustPerspective

=1'), the manual adjustment will be applied before the automatic adjustment algorithm.

'autoSlant=0' disables the automatic adjustment of the vertical slope of the plate.

Name autoSlant

Type int

Default value 1

API JIDOSHA C# / VB.NET

The library's .NET API features three overloaded functions, which facilitate plate recognition from three

sources: a byte array containing the encoded image (JPG or bmp), an object of type 'Image', or a file name.

All require as a parameter a 'JidoshaConfig' object that serves to configure the behavior of the library.

API 1

Methods
recognizesPlate 1

Function

Prototype
Recognition recognizesPlate(byte[] array, JidoshaConfig config)

Description
Returns a 'Recognition' object that represents the recognition result of the plate. The image

(JPG, bmp, etc.) should be passed as an array of bytes.

Return
'Recognition' object containing the string representing the license plate of the vehicle, an array
of doubles containing the probabilities of the characters, the coordinates of the text of the

license plate, the color of the text (dark or light), and a field indicating whether the license

R
ev

is
io

n
 1.

0
.1

Integration Manual
JidoshaLight

87

www.pumatronix.com

plate is a motorcycle. If no plate is found, or if hardkey is not authorized or not found, the

'Recognition' object will contain an empty string as the plate.

recognizesPlate 2

Function

Prototype
Recognition recognizesPlate(Image image, JidoshaConfig config)

Description
Returns a 'Recognition' object that represents the recognition result of the plate. The image
should be passed as a parameter in the form of an 'Image' object.

Return

'Recognition' object containing the string representing the license plate of the vehicle, an array
of doubles containing the probabilities of the characters, the coordinates of the text of the

license plate, the color of the text (dark or light), and a field indicating whether the license
plate is a motorcycle. If no plate is found, or if hardkey is not authorized or not found, the

'Recognition' object will contain an empty string as the plate.

recognizesPlate 3

Function

Prototype
Recognition recognizesPlate(string filename, JidoshaConfig config)

Description
Returns a 'Recognition' object that represents the recognition result of the plate. The image

should be passed as a parameter in the path format from where the image is located.

Return

'Recognition' object containing the string representing the license plate of the vehicle, an array

of doubles containing the probabilities of the characters, the coordinates of the text of the
license plate, the color of the text (dark or light), and a field indicating whether the license

plate is a motorcycle. If no plate is found, or if hardkey is not authorized or not found, the
'Recognition' object will contain an empty string as the plate.

getVersionString

Function
Prototype

String getVersionString()

Description Used to check the version of the library, in major.minor.release format.

Return Returns a string formatted with the version.

getHardkeySerial

Function

Prototype
int getHardkeySerial()

Description Used to verify the serial number of the hardkey.

Return Returns an int containing the serial number of the hardkey.

getHardkeyState

Function

Prototype
int getHardkeyState()

Description
Used to check the state of the hardkey. If state is equal to 0, hardkey is not authorized; if

state is equal to 1, hardkey is authorized.

Return Returns the state of the hardkey (0 or 1, as described above).

R
ev

is
io

n
 1.

0
.1

Integration Manual
JidoshaLight

88

www.pumatronix.com

JIDOSHA C# / VB.NET API Examples

Example C#
using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Drawing;

using JidoshaNET;

namespace JidoshaSample
{
 class JidoshaSample
 {
 static void Main(string[] args)
 {
 Console.WriteLine("Jidosha build {0}", Jidosha.jidoshaBuildInfo());
 Console.WriteLine("Hardkey serial {0}", Jidosha.getHardKeySerial());
 Console.WriteLine("Hardkey {0}", Jidosha.getHardKeyState() == 1 ? "authorized"
: "unauthorized");

 if (args.Length < 1)
 {
 Console.WriteLine("use: jidoshaNETSample image");
 Console.WriteLine("Press Enter to exit");
 Console.ReadLine();
 return;
 }

 // Upload image
 string filename = args[0];
 Image image = Image.FromFile(filename);
 System.IO.MemoryStream stream = new System.IO.MemoryStream();
 image.Save(stream, image.RawFormat);
 byte[] array = stream.ToArray();
 stream.Close();
 stream.Dispose();

 // Sample API1
 JidoshaConfig cfg = new JidoshaConfig();
 cfg.timeout = 0;
 cfg.typePlate = TypePlate.BOTH;
 Recognition r = Jidosha.recognizesPlate(filename, cfg);
 System.Console.WriteLine("recognizePlate: {0}", r.plate);
 r = Jidosha.recognizesPlate(array, cfg);
 System.Console.WriteLine("recognizePlateFromMemory: {0}", r.plate);

 // Sample API2

 // Initializes
 IntPtr JidoshaHandle = Jidosha.jidoshaInit();

 // SetProperty
 Jidosha.jidoshaSetIntProperty(JidoshaHandle, "avgCharHeight", 20);
 Jidosha.jidoshaSetIntProperty(JidoshaHandle, "minNumChars", 6);

R
ev

is
io

n
 1.

0
.1

Integration Manual
JidoshaLight

89

www.pumatronix.com

 Jidosha.jidoshaSetDoubleProperty(JidoshaHandle, "minProbPerCharacter", 0.7);
 Jidosha.jidoshaSetCharProperty(JidoshaHandle, "lowProbabilityChar", '_');

 // GetProperty
 int maxCharHeight = 0;
 double minProb = 0;
 maxCharHeight = Jidosha.jidoshaGetIntProperty(JidoshaHandle, "avgCharHeight");
 minProb = Jidosha.jidoshaGetDoubleProperty(JidoshaHandle,
"minProbPerCharacter");

 Console.WriteLine("Average height: {0}", maxCharHeight);
 Console.WriteLine("Minimum Probability: {0}", minProb);

 // Upload an image
 IntPtr JidoshaImg = Jidosha.jidoshaLoadImage(array, 0, 0, 0);

 // Recognizes license plate
 ResultList resultList = new ResultList();
 Jidosha.jidoshaFindFirst(JidoshaHandle, JidoshaImg, ref resultList);
 while (resultList.recognition[resultList.recognition.Count - 1].plate != "")
 {
 Jidosha.jidoshaFindNext(JidoshaHandle, JidoshaImg, ref resultList);
 }

 // Prints the result
 foreach (Recognition rec in resultList.recognition)
 {
 Console.WriteLine("Plate: {0}", rec.plate);
 Console.Write("Probs:");
 foreach (double d in rec.probabilities)
 Console.Write(" {0},", d);
 Console.WriteLine("");
 }

 // Delete the list of acknowledgments
 Jidosha.jidoshaFreeResultList(resultList);

 // Releases the image
 Jidosha.jidoshaFreeImage(JidoshaImg);

 // Release the jidosha handle
 Jidosha.jidoshaDestroy(JidoshaHandle);

 Console.WriteLine("Press Enter to exit");
 Console.ReadLine();
 }
 }
}

Example VB.NET
Imports JidoshaNET

Module Module1

 Sub Main()
 Dim args() As String = Environment.GetCommandLineArgs()

R
ev

is
io

n
 1.

0
.1

Integration Manual
JidoshaLight

90

www.pumatronix.com

 Dim filename As String = args(1)
 Dim config As JidoshaConfig = New JidoshaConfig()
 config.typePlate = TypePlate.BOTH
 config.timeout = 1000
 Dim rec As Recognition = Jidosha.recognizesPlate(filename, config)
 Console.WriteLine("plate: " + rec.plate)
 End Sub

End Module

API JIDOSHA Delphi

API 1

Methods
recognisesPlate

Function
Prototype

function recognizesPlate(filename: String; config: JidoshaConfig) :
Recognition;

Description
Returns a 'Recognition’ object that represents the recognition result of the plate. The image

should be passed as a parameter in the path format from where the image is located.

Return

'Recognition' object containing the string representing the license plate of the vehicle, an array

of doubles containing the probabilities of the characters, the coordinates of the text of the
license plate, the color of the text (dark or light), and a field indicating whether the license

plate is a motorcycle. If no plate is found, or if hardkey is not authorized or not found, the

'Recognition' object will contain an empty string as the plate.

recognizesFromMemoryPlate

Function

Prototype

function recognizesPlateFromMemory(byteArray: array of byte; config:
JidoshaConfig) : Recognition;

Description
Returns a 'Recognition' object that represents the recognition result of the plate. The image
(JPG, bmp, etc.) should be passed as an array of bytes.

Return

'Recognition' object containing the string representing the license plate of the vehicle, an array
of doubles containing the probabilities of the characters, the coordinates of the text of the

license plate, the color of the text (dark or light), and a field indicating whether the license
plate is a motorcycle. If no plate is found, or if hardkey is not authorized or not found, the

'Recognition' object will contain an empty string as the plate.

Example JIDOSHA Delphi API

Note: This example is for Delphi 2007. In newer versions of Delphi, you may need to convert the filepath

string to AnsiString before moving to the C library. You may also need to convert the AnsiString plate string

to Unicode.

program JidoshaDelphiSample;

{$APPTYPE CONSOLE}

uses
 SysUtils,
 jidoshaDelphi in 'jidoshaDelphi.pas';

var

R
ev

is
io

n
 1.

0
.1

Integration Manual
JidoshaLight

91

www.pumatronix.com

 filename: String;
 rec: rec: Recognition;
 config: JidoshaConfig;
begin
 if ParamCount < 1
 then begin
 Writeln('uso: jidoshaDelphiSample.exe image.jpg');
 Exit;
 end;

 filename := ParamStr(1);
 Writeln(filename);

 config.typePlate := JIDOSHA_TYPE_PLATE_BOTH;
 config.timeout := 1000;
 rec := recognizesPlate(filename, config);
 Writeln('plate: ', rec.plate);
end.

API JIDOSHA Java

API 1

Methods
recognisesPlate

Function
Prototype

public static native Recognition recognizesPlate(String filename,
JidoshaConfig config);

Description
Returns a 'Recognition' object that represents the recognition result of the plate. The image

should be passed as a parameter in the path format from where the image is located.

Parameters

'Recognition' object containing the string representing the license plate of the vehicle, an array

of doubles containing the probabilities of the characters, the coordinates of the text of the
license plate, the color of the text (dark or light), and a field indicating whether the license

plate is a motorcycle. If no plate is found, or if hardkey is not authorized or not found, the

'Recognition' object will contain an empty string as the plate.

recognizesFromMemoryPlate

Function

Prototype

public static native Recognition recognizesFromMemoryPlate(byte[] buf,
JidoshaConfig config);

Description

Returns a 'Recognition' object that represents the recognition result of the plate. This object

contains the plate string and the probability (reliability) of each recognized character. The
image should be passed as a parameter in the byte array format.

Parameters

'Recognition' object containing the string representing the license plate of the vehicle, an array
of doubles containing the probabilities of the characters, the coordinates of the text of the

license plate, the color of the text (dark or light), and a field indicating whether the license

plate is a motorcycle. If no plate is found, or if hardkey is not authorized or not found, the
'Recognition' object will contain an empty string as the plate.

JIDOSHA Java API Example

import br.com.gaussian.jidosha.Jidosha;
import br.com.gaussian.jidosha.JidoshaConfig;
import br.com.gaussian.jidosha.Recognition;

R
ev

is
io

n
 1.

0
.1

Integration Manual
JidoshaLight

92

www.pumatronix.com

class JidoshaSample {
 public static void main(String args[]) throws java.io.IOException {
 JidoshaConfig config = new JidoshaConfig(JidoshaConfig.JIDOSHA_TIPO_PLACA_AMBOS,
0);
 for (int i=0; i < args.length; i++) {
 System.out.println(args[i]);
 Recognition rec = Jidosha.recognizesPlate(args[i], config);
 System.out.println("plate: " + rec.plate);
 }
 }
}

Legacy API Special Builds

For several reasons, the JIDOSHA library had different types of builds for the same version number, which

are generally not compatible with each other. The build can be verified by returning the 'jidoshaBuildInfo'

function. The buildInfo string has the following format: "hash_build", where "hash" is the commit hash,

and "build" is a string denoting the build type.

Until v3.4.0 JidoshaLight is only compatible with JIDOSHA's build 'std', which is the default build. As of

v3.5.0, JidoshaLight is also compatible with build 'charpos' ("character positions"), as long as there is a key

in the registry or environment variable, as detailed below. The only difference from the 'std' version to the

'charpos' version consists of four additional fields in the 'Recognition' struct in the `jidoshaCore.h' header,

which contains the coordinates of the plate characters when the recognition is successful. This difference

in the API makes the 'std' and 'charpos' builds incompatible (an executable compiled for one of these builds

cannot be used with another).

Note: Compatibility mode for build 'charpos' is only supported in the C language API.

For reference, the structs of the 'std' and 'charpos' builds are listed below.

• Build std
typedef struct Recognition
{
char plate[7+1];
 double probabilities[7];
 int xText;
 int yText;
 int widthText;
 int heightText;
 int textColor;
 int isMotorcycle;
} Recognition;

• Build charpos
typedef struct Recognition
{
char plate[7+1];
 double probabilities[7];
 int xText;
 int yText;
 int widthText;
 int heightText;

R
ev

is
io

n
 1.

0
.1

Integration Manual
JidoshaLight

93

www.pumatronix.com

 int xChar[7];
 int yChar[7];
 int widthChar[7];
 int heightChar[7];
 int textColor;
 int isMotorcycle;
} Recognition;

To enable build 'charpos' compatibility mode in Windows, it is necessary to create a key in the Windows

registry, in 'HKLM\SOFTWARE\ PUMATRONIX', named 'JL_LEGACY_API_TYPE', of type 'REG_SZ', and value

'charpos'. Any other value will cause JidoshaLight to revert to default behavior (build 'std' compatibility).

Instead of registering, you can use an environment variable, named 'JL_LEGACY_API_TYPE' and value

'charpos'.

The key in the registry can be created with the following command at the prompt (Administrator credentials

are required):

REG ADD HKLM\SOFTWARE\PUMATRONIX /v JL_LEGACY_API_TYPE /t REG_SZ /d charpos /f

To turn off the build 'charpos' compatibility mode, change the value of the variable to an empty string, or

simply delete the key:

REG DELETE HKLM\SOFTWARE\PUMATRONIX /v JL_LEGACY_API_TYPE

To enable build 'charpos' compatibility mode on Linux, you need to create an environment variable, named

'JL_LEGACY_API_TYPE' and value 'charpos'. Any other value will cause JidoshaLight to revert to default

behavior (build 'std' compatibility).

Remarks:

• If build 'charpos' compatibility mode is enabled ('JL_LEGACY_API_TYPE= charpos'), but the user
code is mistakenly using the build 'std' 'Recognition' struct, invalid memory access or silent data
corruption may occur.

• It is recommended to migrate to the JidoshaLight API as soon as possible.

R
ev

is
ão

 1.
0

.1

Manual de Integração

JidoshaLight

94

www.pumatronix.com

	1. JidoshaLight SDK Structure
	Supported APIs

	2. JidoshaLight Linux
	JidoshaLight Linux software architecture
	JidoshaLight Linux Restrictions

	JidoshaLight Linux Installation
	Hardkey Permissions Configuration
	Setting Environment Variables
	Logging and auditing system

	Preferences Archive Configuration

	Example Applications

	3. JidoshaLight Windows
	JidoshaLight Windows Installation
	Setting Environment Variables
	Logging and auditing system

	Preferences Archive Configuration

	Example Applications

	4. JidoshaLight Linux/FPGA
	JidoshaLight Linux/FPGA software architecture
	JidoshaLight Linux/FPGA Restrictions

	JidoshaLight Linux/FPGA installation
	License Setting
	Setting Environment Variables
	Setting Linux Kernel

	Example Applications

	5. JidoshaLight Android™
	JidoshaLight Android™ Software Architecture
	JidoshaLight Android™ Restrictions

	Installing JidoshaLight Android™
	Licensing
	Permissions

	Example Application
	Package br.gaussian.io
	Package br.gaussian.jidoshalight
	Package br.gaussian.jidoshalight.camera
	Package br.gaussian.jidoshalight.sample
	Common
	Activities
	Fragments

	6. User APIs
	Known Limitations
	JidoshaLight C/C++ API
	JidoshaLight C/C++ API (Local)
	jidosha_light_api_common.h
	jidosha_light_api.h
	Types
	Methods
	Function return codes

	JidoshaLight C/C++ API (Synchronous Remote)
	Methods

	JidoshaLight C/C++ API (Asynchronous Remote)
	Types
	Methods

	JidoshaLight C/C++ API (Server)
	Types
	Methods

	Java JidoshaLight API
	Java JidoshaLight API (Local)
	Types
	Methods
	Function return codes

	JidoshaLight Java API (Asynchronous Remote)
	Types
	Methods

	Java JidoshaLight API (Server)
	Types
	Methods

	Java JidoshaLight API (IO/Mjpeg)
	Types
	Methods

	Migration Guide - API 1 C/C++ JIDOSHA

	7. JIDOSHA User APIs
	jidoshaCore.h
	API1 JIDOSHA C/C++
	Types
	Methods

	API2 JIDOSHA C/C++
	Types
	Methods
	API 2 - Configuration
	API 2 - Image Perspective Configuration

	API JIDOSHA C# / VB.NET
	API 1
	Methods

	JIDOSHA C# / VB.NET API Examples
	Example C#
	Example VB.NET

	API JIDOSHA Delphi
	API 1
	Methods

	Example JIDOSHA Delphi API

	API JIDOSHA Java
	API 1
	Methods

	JIDOSHA Java API Example

	Legacy API Special Builds

